Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 14(10)2024 May 11.
Article in English | MEDLINE | ID: mdl-38786799

ABSTRACT

The conversion of solar energy into hydrogen using photocatalysts is a pivotal solution to the ongoing energy and environmental challenges. In this study, inverse opal (IO) ZnIn2S4 (ZIS) with varying pore sizes is synthesized for the first time via a template method. The experimental results indicate that the constructed inverse opal ZnIn2S4 has a unique photonic bandgap, and its slow photon effect can enhance the interaction between light and matter, thereby improving the efficiency of light utilization. ZnIn2S4 with voids of 200 nm (ZIS-200) achieved the highest hydrogen production rate of 14.32 µ mol h-1. The normalized rate with a specific surface area is five times higher than that of the broken structures (B-ZIS), as the red edge of ZIS-200 is coupled with the intrinsic absorption edge of the ZIS. This study not only developed an approach for constructing inverse opal multi-metallic sulfides, but also provides a new strategy for enriching efficient ZnIn2S4-based photocatalysts for hydrogen evolution from water.

2.
J Allergy Clin Immunol ; 151(4): 1123-1131, 2023 04.
Article in English | MEDLINE | ID: mdl-36586539

ABSTRACT

BACKGROUND: A dysregulated immune response is a hallmark of autoimmune disorders. Evidence suggests that systemic autoimmune diseases and primary immunodeficiency disorders (PIDs) may be similar diseases with different clinical phenotypes. OBJECTIVE: This study aimed to investigate the burden of PID-associated genetic variants in patients with childhood-onset systemic lupus erythematosus (cSLE). METHODS: We enrolled 118 cSLE patients regularly followed at Chang Gung Memorial Hospital. Targeted next-generation sequencing identified PID genetic variants in patients versus 1475 unrelated healthy individuals, which were further filtered by allelic frequency and various functional scores. Customized immune assays tested the functions of the identified variants. RESULTS: On filtration, 36 patients (30.5%) harbored rare variants in PID-associated genes predicted to be damaging. One homozygous TREX1 (c.294dupA) mutation and 4 heterozygous variants with possible dominant PID traits, including BCL11B (c.G1040T), NFKB1 (c.T695G), and NFKB2 (c.G1210A, c.G1651A), were discovered. With recessive traits, variants were found across all PID types; one fifth involved phagocyte number or function defects. Predicted pathogenic PID variants were more predominant in those with a family history of lupus, regardless of infection susceptibility. Moreover, mutation loads were greater among cSLE patients than controls despite sex or age at disease onset. While greater mutation loads were observed among cSLE patients with peripubertal disease onset, no significant differences in sex or phenotype were noted among cSLE patients. CONCLUSION: cSLE is mostly not monogenic. Gene-specific analysis and mutation load investigations suggested that rare and predicted damaging variants in PID-related genes can potentially contribute to cSLE susceptibility.


Subject(s)
Autoimmune Diseases , Lupus Erythematosus, Systemic , Child , Humans , Age of Onset , Lupus Erythematosus, Systemic/genetics , Mutation , Phenotype , Repressor Proteins , Tumor Suppressor Proteins
3.
Water Res ; 207: 117825, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34763279

ABSTRACT

Still ∼10% of world's population has no sustainable access to centralized water supply system, causing millions of deaths annually by waterborne diseases. Here, we develop polypyrrole nanowire arrays (PPyNWs)-modified electrodes by polymerization of pyrrole on graphite felt for point-of-use water disinfection via low-voltage electroporation. A flow-through mode is specially applied to alleviate diffusion barrier of pyrrole in the porous graphite felt for uniform PPyNWs growth. The flow-through disinfection device using the optimized PPyNWs electrode achieves above 4-log removal for model virus (MS2) and gram-positive/negative bacteria (E. faecalis and E. coli) at applied voltage of 1.0 V and fluxes below 1000 and 2500 L/m2/h. Electroporation is recognized as the dominant disinfection mechanism by using square-wave alternating voltage of ±1.0 V to eliminate the electrochemical reactions. In-situ sampling experiments reveal that anode acts as the main disinfection function due to its electric field attraction with negatively charged E. coli cells. The live/dead baclight staining experiments indicate an adsorption-desorption process of E. coli cells on anode, and the adsorption-desorption balance determines the disinfection abilities of PPyNWs anode. Under 1.0 V and 2000 L/m2/h, the disinfection device enables above 4-log E. coli removal in tap water within 7-day operation with energy consumption below 20 mJ/L, suggesting its sound application potential for point-of-use water disinfection.


Subject(s)
Nanowires , Water Purification , Disinfection , Electrodes , Electroporation , Escherichia coli , Polymers , Pyrroles , Water
4.
Nanotechnology ; 32(1): 012002, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-32679577

ABSTRACT

Recent progress in artificial intelligence is largely attributed to the rapid development of machine learning, especially in the algorithm and neural network models. However, it is the performance of the hardware, in particular the energy efficiency of a computing system that sets the fundamental limit of the capability of machine learning. Data-centric computing requires a revolution in hardware systems, since traditional digital computers based on transistors and the von Neumann architecture were not purposely designed for neuromorphic computing. A hardware platform based on emerging devices and new architecture is the hope for future computing with dramatically improved throughput and energy efficiency. Building such a system, nevertheless, faces a number of challenges, ranging from materials selection, device optimization, circuit fabrication and system integration, to name a few. The aim of this Roadmap is to present a snapshot of emerging hardware technologies that are potentially beneficial for machine learning, providing the Nanotechnology readers with a perspective of challenges and opportunities in this burgeoning field.

5.
Nat Nanotechnol ; 14(1): 35-39, 2019 01.
Article in English | MEDLINE | ID: mdl-30420759

ABSTRACT

The memristor1,2 is a promising building block for next-generation non-volatile memory3, artificial neural networks4-7 and bio-inspired computing systems8,9. Organizing small memristors into high-density crossbar arrays is critical to meet the ever-growing demands in high-capacity and low-energy consumption, but this is challenging because of difficulties in making highly ordered conductive nanoelectrodes. Carbon nanotubes, graphene nanoribbons and dopant nanowires have potential as electrodes for discrete nanodevices10-14, but unfortunately these are difficult to pack into ordered arrays. Transfer printing, on the other hand, is effective in generating dense electrode arrays15 but has yet to prove suitable for making fully random accessible crossbars. All the aforementioned electrodes have dramatically increased resistance at the nanoscale16-18, imposing a significant barrier to their adoption in operational circuits. Here we demonstrate memristor crossbar arrays with a 2-nm feature size and a single-layer density up to 4.5 terabits per square inch, comparable to the information density achieved using three-dimensional stacking in state-of-the-art 64-layer and multilevel 3D-NAND flash memory19. Memristors in the arrays switch with tens of nanoamperes electric current with nonlinear behaviour. The densely packed crossbar arrays of individually accessible, extremely small functional memristors provide a power-efficient solution for information storage and processing.

6.
Nanotechnology ; 27(46): 464004, 2016 Nov 18.
Article in English | MEDLINE | ID: mdl-27749277

ABSTRACT

Sub-10 nm metal nanowire arrays are important electrodes for building high density emerging 'beyond CMOS' devices. We made Pt nanowire arrays with sub-10 nm feature size using nanoimprint lithography on silicon substrates with 100 nm thick thermal oxide. We further studied the critical dimension (CD) evolution in the fabrication procedure and achieved 0.4 nm CD control, providing a viable solution to the imprint lithography CD challenge as specified by the international technology roadmap for semiconductors. Finally, we fabricated Pt/TiO2/Pt memristor crossbar arrays with the 8 nm electrodes, demonstrating great potential in dimension scaling of this emerging device.

7.
Small ; 12(33): 4481-5, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27409066

ABSTRACT

Genetic modification to add tryptophan to PilA, the monomer for the electrically conductive pili of Geobacter sulfurreducens, yields conductive protein filaments 2000-fold more conductive than the wild-type pili while cutting the diameter in half to 1.5 nm.


Subject(s)
Electric Conductivity , Geobacter/chemistry , Nanowires/chemistry , Proteins/chemistry , Amino Acid Sequence , Fimbriae, Bacterial/metabolism , Fimbriae, Bacterial/ultrastructure , Nanowires/ultrastructure , Tryptophan/metabolism
8.
Nat Commun ; 6: 7519, 2015 Jun 25.
Article in English | MEDLINE | ID: mdl-26108890

ABSTRACT

Radiofrequency switches are critical components in wireless communication systems and consumer electronics. Emerging devices include switches based on microelectromechanical systems and phase-change materials. However, these devices suffer from disadvantages such as large physical dimensions and high actuation voltages. Here we propose and demonstrate a nanoscale radiofrequency switch based on a memristive device. The device can be programmed with a voltage as low as 0.4 V and has an ON/OFF conductance ratio up to 10(12) with long state retention. We measure the radiofrequency performance of the switch up to 110 GHz and demonstrate low insertion loss (0.3 dB at 40 GHz), high isolation (30 dB at 40 GHz), an average cutoff frequency of 35 THz and competitive linearity and power-handling capability. Our results suggest that, in addition to their application in memory and computing, memristive devices are also a leading contender for radiofrequency switch applications.

9.
Nanotechnology ; 25(40): 405202, 2014 Oct 10.
Article in English | MEDLINE | ID: mdl-25224779

ABSTRACT

Planar memristive devices with bottom electrodes embedded into the substrates were integrated on top of CMOS substrates using nanoimprint lithography to implement hybrid circuits with a CMOL-like architecture. The planar geometry eliminated the mechanically and electrically weak parts, such as kinks in the top electrodes in a traditional crossbar structure, and allowed the use of thicker and thus less resistive metal wires as the bottom electrodes. Planar memristive devices integrated with CMOS have demonstrated much lower programing voltages and excellent switching uniformity. With the inclusion of the Moiré pattern, the integration process has sub-20 nm alignment accuracy, opening opportunities for 3D hybrid circuits in applications in the next generation of memory and unconventional computing.

10.
Nanotechnology ; 24(32): 325301, 2013 Aug 16.
Article in English | MEDLINE | ID: mdl-23863298

ABSTRACT

We present a simple and effective mold cleaning method for nanoimprint lithography. Polydimethylsiloxane (PDMS) prepolymer is spin-coated onto a contaminated imprint mold, thermally cured in an ambient environment, and then peeled off afterwards. Contaminants of 100 s µm to sub-50 nm sizes are effectively cleaned within one cycle. During the cleaning process, a very thin PDMS film (1-2 nm) is uniformly coated onto the mold surface, serving as a protection and anti-sticking layer.

SELECTION OF CITATIONS
SEARCH DETAIL
...