Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Infect Agent Cancer ; 15: 6, 2020.
Article in English | MEDLINE | ID: mdl-32021648

ABSTRACT

Cervical cancer is the fourth most common malignant tumor in women worldwide. The persistent infection of high-risk Human Papillomavirus (hrHPV) is considered to be the primary cause of this disease. As an innate immune receptor, the nucleotide-binding oligomerization domain protein-1 (NOD1) recognizes the pathogen-associated molecular pattern (PAMP), subsequently initiating immune responses. NOD1 is also involved in the apoptotic signaling pathway and mutates in many cancer cells. In the study, we revealed that NOD1 expression decreased during the progression of cervical intraepithelial neoplasia to cervical cancer and that HPV16 E6/E7 oncoproteins induced down-regulation of NOD1. Moreover, the activation of NOD1 promoted the apoptosis of HPV16-positive cervical cancer cells. The data indicated that the dysregulation of NOD1-mediated inflammation and apoptosis may contribute to cervical intraepithelial neoplasia progression and cervical cancer.

2.
J Cancer ; 10(12): 2654-2660, 2019.
Article in English | MEDLINE | ID: mdl-31258773

ABSTRACT

Cytology-based Papanicolaou test on and primary HPV screening have been widely used in the identification of cervical cancer and precancerous lesions, which is of great significance for the prevention and treatment of cervical cancer. Patients diagnosed as ASCUS/LSIL usually need follow-up because some of them may develop into CIN2+. The consequences of women positive for HPV vary from person to person; some of them may progress into cervical dysplasia, reversible forms of precancerous lesions, and eventually invasive cervical cancer. Therefore, it is necessary to establish an effective biomarker to triage different patients according to the preliminary screening results. p16 acts as a cell cycle regulatory protein that induces cell cycle arrest, and Ki-67 is a cell proliferation marker. Under physiological conditions, they could not co-express in the same cervical epithelial cells. The co-expression of these two molecules suggests a deregulation of the cell cycle mediated by HR-HPV infection and predicts the presence of high-grade cervical epithelial lesions. There is increasing evidence that p16/Ki-67 dual-staining cytology can be used as an alternative biomarker, showing overall high sensitivity and specificity for identifying high-grade CIN and cervical cancer. In this review, we discuss the significance of p16/Ki-67 dual-staining and summarize its application in the screening and triaging of cervical cancer and precancerous lesions.

SELECTION OF CITATIONS
SEARCH DETAIL
...