Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Nutrients ; 15(23)2023 Nov 26.
Article in English | MEDLINE | ID: mdl-38068786

ABSTRACT

Non-nutritive sweeteners (NNSs) provide a sweet taste to foods and beverages without significantly adding calories. Still, their consumption has been linked to modifications in adult's and children's gut microbiota and the disruption of blood glucose control. Human milk microbiota are paramount in establishing infants' gut microbiota, but very little is known about whether the consumption of sweeteners can alter it. To address this question, we sequenced DNA extracted colostrum samples from a group of mothers, who had different levels of NNS consumption, using the Ion Torrent Platform. Our results show that the "core" of colostrum microbiota, composed of the genera Bifidobacterium, Blautia, Cutibacteium, Staphylococcus, and Streptococcus, remains practically unchanged with the consumption of NNS during pregnancy, but specific genera display significant alterations, such as Staphylococcus and Streptococcus. A significant increase in the unclassified archaea Methanobrevibacter spp. was observed as the consumption frequency of NNS increased. The increase in the abundance of this archaea has been previously linked to obesity in Mexican children. NNS consumption during pregnancy could be related to changes in colostrum microbiota and may affect infants' gut microbiota seeding and their future health.


Subject(s)
Microbiota , Non-Nutritive Sweeteners , Pregnancy , Female , Adult , Child , Humans , Colostrum , Sweetening Agents , Energy Intake
2.
Biotechnol Lett ; 45(10): 1339-1353, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37535136

ABSTRACT

Methane production by microbial fermentation of municipal waste is a challenge for better yield processes. This work describes the characterization of a hydrogenotrophic methanogen microbial community used in a bioaugmentation procedure to improve the methane yield in a thermophilic anaerobic process, digesting the organic fraction of municipal solid waste. The performance of the bioaugmentation was assessed in terms of methane production and changes in the microbial community structure. The results showed that bioaugmentation slightly improved the cumulative methane yield (+ 4%) in comparison to the control, and its use led to an acceleration of the methanogenesis stage. We observed associated significant changes in the relative abundance of taxa and their interactions, using high throughput DNA sequencing of V3-16S rRNA gene libraries, where the abundance of the archaeal hydrogenotrophic genus Methanoculleus (class Methanomicrobia, phylum Euryarchaeota) and the bacterial order MBA08 (class Clostridia, phylum Firmicutes) were dominant. The relevant predicted metabolic pathways agreed with substrate degradation and the anaerobic methanogenic process. The purpose of the study was to evaluate the effect of the addition of hydrogenotrophic methanogens in the generation of methane, while treating organic waste through anaerobic digestion.


Subject(s)
Euryarchaeota , Microbiota , Anaerobiosis , Methane/metabolism , RNA, Ribosomal, 16S/genetics , Bioreactors/microbiology , Euryarchaeota/genetics , Euryarchaeota/metabolism , Microbiota/genetics , Firmicutes/metabolism
3.
Nutrients ; 14(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36432504

ABSTRACT

Gestational diabetes (GD), pre-gestational diabetes (PD), and pre-eclampsia (PE) are morbidities affecting gestational health which have been associated with dysbiosis of the mother's gut microbiota. This study aimed to assess the extent of change in the gut microbiota diversity, short-chain fatty acids (SCFA) production, and fecal metabolites profile in a sample of Mexican women affected by these disorders. Fecal samples were collected from women with GD, PD, or PE in the third trimester of pregnancy, along with clinical and biochemical data. Gut microbiota was characterized by high-throughput DNA sequencing of V3-16S rRNA gene libraries; SCFA and metabolites were measured by High-Pressure Liquid Chromatography (HPLC) and (Fourier Transform Ion Cyclotron Mass Spectrometry (FT-ICR MS), respectively, in extracts prepared from feces. Although the results for fecal microbiota did not show statistically significant differences in alfa diversity for GD, PD, and PE concerning controls, there was a difference in beta diversity for GD versus CO, and a high abundance of Proteobacteria, followed by Firmicutes and Bacteroidota among gestational health conditions. DESeq2 analysis revealed bacterial genera associated with each health condition; the Spearman's correlation analyses showed selected anthropometric, biochemical, dietary, and SCFA metadata associated with specific bacterial abundances, and although the HPLC did not show relevant differences in SCFA content among the studied groups, FT-ICR MS disclosed the presence of interesting metabolites of complex phenolic, valeric, arachidic, and caprylic acid nature. The major conclusion of our work is that GD, PD, and PE are associated with fecal bacterial microbiota profiles, with distinct predictive metagenomes.


Subject(s)
Diabetes, Gestational , Gastrointestinal Microbiome , Pre-Eclampsia , Pregnancy , Humans , Female , Gastrointestinal Microbiome/genetics , RNA, Ribosomal, 16S/analysis , Dysbiosis/microbiology , Feces/microbiology , Fatty Acids, Volatile/metabolism , Bacteria
4.
Int J Mol Sci ; 23(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36142219

ABSTRACT

COVID-19 is a severe respiratory disease threatening pregnant women, which increases the possibility of adverse pregnancy outcomes. Several recent studies have demonstrated the ability of SARS-CoV-2 to infect the mother enterocytes, disturbing the gut microbiota diversity. The aim of this study was to characterize the entero-mammary microbiota of women in the presence of the virus during delivery. Fifty mother−neonate pairs were included in a transversal descriptive work. The presence of SARS-CoV-2 RNA was detected in nasopharyngeal, mother rectal swabs (MRS) and neonate rectal swabs (NRS) collected from the pairs, and human colostrum (HC) samples collected from mothers. The microbiota diversity was characterized by high-throughput DNA sequencing of V3-16S rRNA gene libraries prepared from HC, MRS, and NRS. Data were analyzed with QIIME2 and R. Our results indicate that several bacterial taxa are highly abundant in MRS positive for SARS-CoV-2 RNA. These bacteria mostly belong to the Firmicutes phylum; for instance, the families Bifidobacteriaceae, Oscillospiraceae, and Microbacteriaceae have been previously associated with anti-inflammatory effects, which could explain the capability of women to overcome the infection. All samples, both positive and negative for SARS-CoV-2, featured a high abundance of the Firmicutes phylum. Further data analysis showed that nearly 20% of the bacterial diversity found in HC was also identified in MRS. Spearman correlation analysis highlighted that some genera of the Proteobacteria and Actinobacteria phyla were negatively correlated with MRS and NRS (p < 0.005). This study provides new insights into the gut microbiota of pregnant women and their potential association with a better outcome during SARS-CoV-2 infection.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Anti-Inflammatory Agents , Bacteria/genetics , Female , Firmicutes/genetics , Gastrointestinal Microbiome/genetics , Humans , Infant, Newborn , Infectious Disease Transmission, Vertical , Pregnancy , RNA, Ribosomal, 16S/genetics , RNA, Viral , SARS-CoV-2
5.
Arch Microbiol ; 204(7): 382, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35687150

ABSTRACT

Horses are non-ruminant, herbivorous mammals, been used through history for various purposes, with a gut microbiota from cecum to the colon, possessing remarkable fermentative capacity. We studied the fecal microbiota of Azteca, Criollo, Frisian, Iberian, Pinto, Quarter and Spanish horse breeds living in Mexico by next-generation DNA sequencing of 16S rRNA gene libraries. Dominant phyla Firmicutes, Bacteroidetes, Proteobacteria, Spirochaetes, Fibrobacteres, Actinobacteria and Verrucomicrobia have different relative abundances among breeds, with contrasted alpha and beta diversities as well. Heatmap analysis revealed that Ruminococcaceae, Lachnospiraceae, Mogibacteriaceae families, and order Clostridiales are more abundant in Spanish, Azteca, Quarter and Criollo breeds. The LEfSe analysis displayed higher abundance of order Bacteroidales, family BS11, and genera Faecalibacterium, Comamonas, Collinsella, Acetobacter, and Treponema in Criollo, Azteca, Iberian, Spanish, Frisian, Pinto, and Quarter horse breeds. The conclusion is that dominant bacterial taxa, found in fecal samples of horse breeds living in Mexico, have different relative abundances.


Subject(s)
Actinobacteria , Bacteroidetes , Actinobacteria/genetics , Animals , Bacteroidetes/genetics , Clostridiales/genetics , Feces/microbiology , High-Throughput Nucleotide Sequencing , Horses , Mammals/genetics , Mexico , RNA, Ribosomal, 16S/genetics , Verrucomicrobia/genetics
6.
J Hum Lact ; 38(1): 118-130, 2022 Feb.
Article in English | MEDLINE | ID: mdl-33906488

ABSTRACT

BACKGROUND: Human milk is the best food for infants; however, when breastfeeding is not possible, pasteurized milk from human milk banks is the best alternative. Little has been reported about variations in the bacterial microbiota composition of human milk after pasteurization. RESEARCH AIM: To characterize and compare the bacterial microbiota composition and diversity within human milk among Mexican mothers before and after the Holder pasteurization process. METHODS: A cross-sectional, observational, and comparative design was used. The effect of the pasteurization process on the bacterial composition and diversity of human milk samples of donors (N = 42) from a public milk bank was assessed before and after pasteurization by high throughput deoxyribonucleic acid sequencing of V3-16S rRNA gene libraries. Sequencing data were examined using the Quantitative Insights into Microbial Ecology software and Phyloseq in R environment. RESULTS: A varied community of bacteria was found in both raw and pasteurized human milk. The bacterial diversity of the milk samples was increased by the pasteurization, where some thermoduric bacteria of the phyla Proteobacteria, Firmicutes, and Actinobacteria were more abundant. The source tracker analysis indicated that at most 1.0% of bacteria may have come from another source, showing the safety of the process used to treat milk samples. CONCLUSION: The pasteurization process increased the bacterial diversity. We selected taxa capable of surviving the process, which could proliferate after the treatment without being a risk for infants.


Subject(s)
Microbiota , Milk Banks , Bacteria/genetics , Breast Feeding , Cross-Sectional Studies , Female , High-Throughput Nucleotide Sequencing , Humans , Infant , Microbiota/genetics , Milk, Human/microbiology , Pasteurization , RNA, Ribosomal, 16S/genetics
7.
Microb Ecol ; 84(2): 510-526, 2022 Aug.
Article in English | MEDLINE | ID: mdl-34553243

ABSTRACT

Bouvardia ternifolia is a medicinal plant considered a source of therapeutic compounds, like the antitumoral cyclohexapeptide bouvardin. It is known that large number of secondary metabolites produced by plants results from the interaction of the host and adjacent or embedded microorganisms. Using high-throughput DNA sequencing of V3-16S and V5-18S ribosomal gene libraries, we characterized the endophytic, endophytic + epiphyte bacterial, and fungal communities associated to flowers, leaves, stems, and roots, as well as the rhizosphere. The Proteobacteria (average 80.7%) and Actinobacteria (average 14.7%) were the most abundant bacterial phyla, while Leotiomycetes (average 54.8%) and Dothideomycetes (average 27.4%) were the most abundant fungal classes. Differential abundance for the bacterial endophyte group showed a predominance of Erwinia, Propionibacterium, and Microbacterium genera, while Sclerotinia, Coccomyces, and Calycina genera predominated for fungi. The predictive metagenome analysis for bacteria showed significative abundance of pathways for secondary metabolite production, while a FUNguild analysis revealed the presence of pathotroph, symbiotroph, and saprotrophs in the fungal community. Intra and inter copresence and mutual exclusion interactions were identified for bacterial and fungal kingdoms in the endophyte communities. This work provides a description of the diversity and composition of bacterial and fungal microorganisms living in flowers, leaves, stems, roots, and the rhizosphere of this medicinal plant; thus, it paves the way towards an integral understanding in the production of therapeutic metabolites.


Subject(s)
Mycobiome , Plants, Medicinal , Rubiaceae , Bacteria/genetics , Endophytes , Fungi/genetics , Plant Roots/microbiology , Plants, Medicinal/microbiology , RNA, Ribosomal, 16S/genetics , Rhizosphere , Rubiaceae/genetics , Soil Microbiology
8.
Front Immunol ; 12: 712130, 2021.
Article in English | MEDLINE | ID: mdl-34804008

ABSTRACT

Microbiota acquired during labor and through the first days of life contributes to the newborn's immune maturation and development. Mother provides probiotics and prebiotics factors through colostrum and maternal milk to shape the first neonatal microbiota. Previous works have reported that immunoglobulin A (IgA) secreted in colostrum is coating a fraction of maternal microbiota. Thus, to better characterize this IgA-microbiota association, we used flow cytometry coupled with 16S rRNA gene sequencing (IgA-Seq) in human colostrum and neonatal feces. We identified IgA bound bacteria (IgA+) and characterized their diversity and composition shared in colostrum fractions and neonatal fecal bacteria. We found that IgA2 is mainly associated with Bifidobacterium, Pseudomonas, Lactobacillus, and Paracoccus, among other genera shared in colostrum and neonatal fecal samples. We found that metabolic pathways related to epithelial adhesion and carbohydrate consumption are enriched within the IgA2+ fecal microbiota. The association of IgA2 with specific bacteria could be explained because these antibodies recognize common antigens expressed on the surface of these bacterial genera. Our data suggest a preferential targeting of commensal bacteria by IgA2, revealing a possible function of maternal IgA2 in the shaping of the fecal microbial composition in the neonate during the first days of life.


Subject(s)
Antigens/immunology , Colostrum/chemistry , Colostrum/immunology , Gastrointestinal Microbiome/immunology , Immunoglobulin A/immunology , Antigens/chemistry , Bacteria/immunology , Feces/microbiology , Female , Humans , Immunoglobulin A/analysis , Immunoglobulin A/classification , Infant, Newborn , Linear Models , Longitudinal Studies , Pregnancy , Prospective Studies , RNA, Ribosomal, 16S/genetics
9.
Microb Pathog ; 152: 104763, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33529736

ABSTRACT

Cervical cancer is an important health issue worldwide. Many factors are related to this condition as the persistence of human papillomavirus (HPV) infection (e.g. type 16 and 18), the use of hormonal contraceptives for long periods of time, pH changes and bacterial vaginosis. The association between the microbiota and cervical human cancer is an interesting issue to be explored; given that environmental and hormonal factors may change the vaginal microbiota contributing to this condition. Our hypothesis was that changes in the microbiota diversity is associated with the development of cervical cancer. We evaluated the microbiota diversity in vaginal lavages and fecal samples at different stages of cervical cancer development in a mice model (K14HPV16E7) with type 16 E7 oncogene expression (E7), under continuous or not continuous stimulus of 17ß-estradiol (E2) and compared it with a non-transgenic isogenic control (FVB) under same conditions. Our results indicate that continuous E2 administration during 6 months in the model with type 16 E7 expression causing development of cancer, is associated with significant changes in the microbiota diversity of the cervicovaginal lavages. Similar results were not observed in the same model when no E2 was administered to the mice. The FVB mice with no E7 expression which do not develop cervical cancer, did not show comparable changes in the microbiota diversity when E2 was administered during the same period. Normal evolution of the cervical epithelium and microbiota diversity were observed for the FVB mice with no E2 administration. Large changes in the microbiota diversity in fecal samples were not observed suggesting a specific organ effect of E7 expression associated to E2 on the vaginal microbiota.


Subject(s)
Microbiota , Oncogene Proteins, Viral , Papillomavirus Infections , Uterine Cervical Neoplasms , Animals , Estradiol , Female , Humans , Mice , Oncogene Proteins, Viral/genetics , Oncogenes , Papillomaviridae/genetics , Papillomavirus E7 Proteins/genetics
10.
PeerJ ; 8: e9205, 2020.
Article in English | MEDLINE | ID: mdl-32509465

ABSTRACT

BACKGROUND: Human milk microbiota plays a role in the bacterial colonization of the neonatal gut, which has important consequences in the health and development of the newborn. However, there are few studies about the vertical transfer of bacteria from mother to infant in Latin American populations. METHODS: We performed a cross-sectional study characterizing the bacterial diversity of 67 human milk-neonatal stool pairs by high-throughput sequencing of V3-16S rDNA libraries, to assess the effect of the human milk microbiota on the bacterial composition of the neonate's gut at early days. RESULTS: Human milk showed higher microbial diversity as compared to the neonatal stool. Members of the Staphylococcaceae and Sphingomonadaceae families were more prevalent in human milk, whereas the Pseudomonadaceae family, Clostridium and Bifidobacterium genera were in the neonatal stool. The delivery mode showed association with the neonatal gut microbiota diversity, but not with the human milk microbiota diversity; for instance, neonates born by C-section showed greater richness and diversity in stool microbiota than those born vaginally. We found 25 bacterial taxa shared by both ecosystems and 67.7% of bacteria found in neonate stool were predicted to originate from human milk. This study contributes to the knowledge of human milk and neonatal stool microbiota in healthy Mexican population and supports the idea of vertical mother-neonate transmission through exclusive breastfeeding.

11.
Food Res Int ; 113: 371-381, 2018 11.
Article in English | MEDLINE | ID: mdl-30195531

ABSTRACT

Cheese is a live food whose preparation involves procedures and microbial communities playing an important role for the final product. We characterized the bacterial and fungal diversity of seventeen different Mexican cheeses by high-throughput DNA sequencing of 16S/18S rDNA libraries. We propose the existence of bacterial and fungal core communities, where at genera level, bacteria include Streptococcus spp., Lactococcus spp., Lactobacillus spp., Aerococcus spp., and Weisella spp. while at species level, the fungal community includes Galactomyces reessii, Scheffersomyces stipitis, Saccharomyces cerevisiae (baker's yeast), and S. cerevisiae_rm11-1a. In addition to the bacterial and fungal core communities, we found members of the cheese microbiota that could be associated to other factors of the cheese manufacturing process. Co-occurrence analysis made in this work, indicates that bacterial and fungal communities maintain positive and negative interactions which are important to shape the resident microbial communities in cheeses. This work is a contribution to the description of the microbial diversity found in some Mexican cheeses.


Subject(s)
Bacteria , Cheese , Fungi , High-Throughput Nucleotide Sequencing/methods , Bacteria/classification , Bacteria/genetics , Cheese/classification , Cheese/microbiology , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Fungi/classification , Fungi/genetics , Mexico , Sequence Analysis, DNA
13.
Microb Ecol ; 72(1): 70-84, 2016 07.
Article in English | MEDLINE | ID: mdl-26944561

ABSTRACT

Greater Mexico City is one of the largest urban centers in the world, with an estimated population by 2010 of more than 20 million inhabitants. In urban areas like this, biological material is present at all atmospheric levels including live bacteria. We sampled the low atmosphere in several surveys at different points by the gravity method on LB and blood agar media during winter, spring, summer, and autumn seasons in the years 2008, 2010, 2011, and 2012. The colonial phenotype on blood agar showed α, ß, and γ hemolytic activities among the live collected bacteria. Genomic DNA was extracted and convenient V3 hypervariable region libraries of 16S rDNA gene were high-throughput sequenced. From the data analysis, Firmicutes, Proteobacteria, and Actinobacteria were the more abundant phyla in all surveys, while the genera from the family Enterobacteriaceae, in addition to Bacillus spp., Pseudomonas spp., Acinetobacter spp., Erwinia spp., Gluconacetobacter spp., Proteus spp., Exiguobacterium spp., and Staphylococcus spp. were also abundant. From this study, we conclude that it is possible to detect live airborne nonspore-forming bacteria in the low atmosphere of GMC, associated to the microbial cloud of its inhabitants.


Subject(s)
Air Microbiology , Bacteria/classification , Biodiversity , Phylogeny , Actinobacteria/genetics , Actinobacteria/isolation & purification , Bacillus/genetics , Bacillus/isolation & purification , Bacteria/isolation & purification , Cities , Culture Media , DNA, Bacterial/genetics , Genomics , Gluconacetobacter/genetics , Gluconacetobacter/isolation & purification , Mexico , Proteobacteria/genetics , Proteobacteria/isolation & purification , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
14.
Biochim Biophys Acta ; 1769(3): 194-203, 2007 Mar.
Article in English | MEDLINE | ID: mdl-17337072

ABSTRACT

PNPase is a phosphate-dependent exonuclease of Escherichia coli required for growth in the cold. In this work we explored the effect of specific mutations in its two RNA binding domains KH and S1 on RNA binding, enzymatic activities, autoregulation and ability to grow at low temperature. We removed critical motifs that stabilize the hydrophobic core of each domain, as well as made a complete deletion of both (DeltaKHS1) that severely impaired PNPase binding to RNA. Nevertheless, a residual RNA binding activity, possibly imputable to catalytic binding, could be observed even in the DeltaKHS1 PNPase. These mutations also resulted in significant changes in the kinetic behavior of both phosphorolysis and polymerization activities of the enzyme, in particular for the double mutant Pnp-DeltaKHS1-H. Additionally, PNPases with mutations in these RNA binding domains did not autoregulate efficiently and were unable to complement the growth defect of a chromosomal Deltapnp mutation at 18 degrees C. Based on these results it appears that in E. coli the RNA binding domains of PNPase, in particular the KH domain, are vital at low temperature, when the stem-loop structures present in the target mRNAs are more stable and a machinery capable to degrade structured RNA may be essential.


Subject(s)
Escherichia coli/enzymology , Gene Expression Regulation, Bacterial , Polyribonucleotide Nucleotidyltransferase/metabolism , RNA, Bacterial/metabolism , Amino Acid Sequence , Binding Sites/genetics , Electrophoretic Mobility Shift Assay , Escherichia coli/genetics , Escherichia coli/growth & development , Genetic Complementation Test , Homeostasis , Molecular Sequence Data , Mutation/genetics , Polyribonucleotide Nucleotidyltransferase/genetics , Protein Binding , Protein Structure, Tertiary/genetics , RNA, Messenger/genetics , Sequence Deletion , Sequence Homology, Amino Acid , Temperature
15.
Biochimie ; 88(6): 725-35, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16483707

ABSTRACT

In the present work we have used a double-hybrid assay in bacteria to identify a putative domain in E. coli PNPase required for in vivo interaction with RNase E. We used a 202 aa fragment of RNase E previously reported as the PNPase binding domain in this enzyme and a collection of 13 different fragments of 105 aa, spanning the entire sequence of 734 aa PNPase (GenBank Accession number NP_417633). Our results indicate that two clones of PNPase including residues 158-262 and residues 473-577 contain interaction sites for RNase E within a betabetaalphabetabetaalpha domain configuration. Three-dimensional modeling of the E. coli PNPase based on the S. antibioticus protein structure indicates that the putative binding domain is located on the monomer surface, facing outward from the trimeric tertiary structure. Since a copy of the betabetaalphabetabetaalpha domain is also found in RNase PH, we investigated and found an interaction with RNase E in a pull-down assay. We suggest this interaction takes place through the similar betabetaalphabetabetaalpha domain present in the tertiary structure of this enzyme. Based on these results, we propose that RNase PH and RNase E could form functional assemblies in E. coli.


Subject(s)
Endoribonucleases/metabolism , Polyribonucleotide Nucleotidyltransferase/chemistry , Polyribonucleotide Nucleotidyltransferase/metabolism , Escherichia coli , Models, Molecular , Protein Binding , Protein Structure, Quaternary , Protein Structure, Tertiary , Protein Subunits/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...