Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 25(31): 20794-20807, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37465860

ABSTRACT

Foam-like NiMo coatings were produced from an inexpensive mixture of Ni, Al, and Mo powders via atmospheric plasma spraying. The coatings were deposited onto stainless-steel meshes forming a highly porous network mainly composed of nanostructured Ni and highly active Ni4Mo. High material loading (200 mg cm-2) with large surface area (1769 cm2 per cm2) was achieved without compromising the foam-like characteristics. The coatings exhibited excellent activity towards both hydrogen evolution (HER) and oxygen evolution (OER) reactions in alkaline media. The HER active coating required an overpotential of 42 mV to reach a current density of -50 mA cm-2 with minimum degradation after a 24 h chronoamperometry test at -10 mA cm-2. Theoretical simulations showed that several crystal surfaces of Ni4Mo exhibit near optimum hydrogen adsorption energies and improved water dissociation that benefit the HER activity. The OER active coating also consisting of nanostructured Ni and Ni4Mo required only 310 mV to achieve a current density of 50 mA cm-2. The OER activity was maintained even after 48 h of continuous operation. We envisage that the development of scalable production techniques for Ni4Mo alloys will greatly benefit its usage in commercial alkaline water electrolysers.

2.
Chemistry ; 29(50): e202301604, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37367388

ABSTRACT

Graphene oxide (GO) is a 2D nanomaterial with unique chemistry due to the combination of sp2 hybridization and oxygen functional groups (OFGs) even in single layer. OFGs play a fundamental role in the chemical functionalization of GO to produce GO-based materials for diverse applications. However, traditional strategies that employ epoxides, alcohols, and carboxylic acids suffer from low control and undesirable side reactions, including by-product formation and GO reduction. Thiol-ene "click" reaction offers a promising and versatile chemical approach for the alkene functionalization (-C=C-) of GO, providing orthogonality, stereoselectivity, regioselectivity, and high yields while reducing by-products. This review examines the chemical functionalization of GO via thiol-ene "click" reactions, providing insights into the underlying reaction mechanisms, including the role of radical or base catalysts in triggering the reaction. We discuss the "how" and "where" the reaction takes place on GO, the strategies to avoid unwanted side reactions, such as GO reduction and by-product formation. We anticipate that multi-functionalization of GO via the alkene groups will enhance GO physicochemical properties while preserving its intrinsic chemistry.

SELECTION OF CITATIONS
SEARCH DETAIL
...