Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Animals (Basel) ; 13(11)2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37889796

ABSTRACT

This study determined the effect of pelagic Sargassum on in vitro dry matter and organic matter degradation, total gas production (TGP), and protozoa population. The treatments were different levels of Sargassum inclusion on a basal substrate (Stargrass hay; Cynodon nlemfuensis) as follows: T0 (control treatment based on Stargrass hay), T10 (90% Stargrass hay + 10% Sargassum), T20 (80% Stargrass hay + 20% Sargassum), and T30 (70% Stargrass hay + 30% Sargassum). Ruminal fermentation kinetics and protozoa population were determined during 72 h of in vitro incubations. Compared to control, dry matter degradability at 48 and 72 h and organic matter degradability at 24 and 48 h were higher in Sargassum treatments. TGP was lower with T20 at 48 h. The total population of protozoa and the concentration of Entodinium spp. were lower at T20 at 48 h and T30 at 72 h. Cl, S, Ca, K, and Zn (103, 5.97, 88.73, 285.70 g/kg, and 15,900 mg/kg) were high in Sargassum, reaching twice or even nine times higher than the contents in Stargrass (11.37, 1.60, 43.53, 87.73 g/kg, and 866.67 mg/kg). Overall, up to 30% pelagic Sargassum could be included in hay-based substrates from tropical grasses without negative effects on in vitro dry matter and organic matter degradability.

2.
Heliyon ; 9(6): e17071, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37383206

ABSTRACT

The susceptibility of meat and meat products (MP) to oxidation and microbial deterioration poses a risk to the nutritional quality, safety, and shelf life of the product. This analysis provides a brief overview of how bioactive compounds (BC) impact meat and MP preservation, and how they can be utilized for preservation purposes. The use of BC, particularly plant-based antioxidants, can reduce the rate of auto-oxidation and microbial growth, thereby extending the shelf life of MP. These BC include polyphenols, flavonoids, tannins, terpenes, alkaloids, saponins, and coumarins, which have antioxidant and antimicrobial properties. Bioactive compounds can act as preservatives and improve the sensory and physicochemical properties of MP when added under appropriate conditions and concentrations. However, the inappropriate extraction, concentration, or addition of BC can also lead to undesired effects. Nonetheless, BC have not been associated with chronic-degenerative diseases and are considered safe for human consumption. MP auto-oxidation leads to the generation of reactive oxygen species, biogenic amines, malonaldehyde (MDA), and metmyoglobin oxidation products, which are detrimental to human health. The addition of BC at a concentration ranging from 0.025 to 2.5% (w/w in powdered or v/w in oil or liquid extracts) can act as a preservative, improving color, texture, and shelf life. The combination of BC with other techniques, such as encapsulation and the use of intelligent films, can further extend the shelf life of MP. In the future, it will be necessary to examine the phytochemical profile of plants that have been used in traditional medicine and cooking for generations to determine their feasibility in MP preservation.

3.
Animals (Basel) ; 12(22)2022 Nov 15.
Article in English | MEDLINE | ID: mdl-36428382

ABSTRACT

This study determined the effect of replacing ground corn and soybean meal with ground Pouteria sapota kernel (PSSM) in lamb diets on nutrient intake and digestibility, performance, and carcass traits. Twenty-one male hair sheep lambs with an average body weight of 22 ± 3.5 kg were randomly assigned to three treatment diets containing PSSM at 0, 10, and 20% of the total dry matter (DM) inclusion. The study lasted 60 days, which included 15 days for adaption and 45 days for sample collection. The PSSM inclusion did not affect intake or performance (p > 0.05). However, ether extract (EE) digestibility linearly increased (p < 0.0001), while crude protein (CP) and acid detergent fiber (ADF) linearly decreased. Final body weight, total weight gain, average daily weight gain, feeding efficiency, and carcass traits were not affected by PSSM inclusion. In conclusion, these results suggest that PSSM can replace up to 200 g/kg DM of ground corn and soybean meal without affecting intake or animal performance.

4.
Animals (Basel) ; 12(19)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36230330

ABSTRACT

This study determined productive performance, ruminal fermentation kinetics and rumen ciliate protozoa in hair sheep lambs fed different levels of olive oil. Twenty-four growing lambs were used, with an initial live weight of 10.5 ± 2.9 kg, and randomly assigned into four treatments (six animals per treatment) containing increasing levels of extra virgin olive oil (0, 2, 4 and 6% of dry matter). Animals were fed for 80 days, and sampling was carried out weekly. Intake of dry matter (DM), organic matter (OM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF) and metabolizable energy (ME) differed between treatments (p < 0.05), with a linear and cubic tendency to decrease when oil concentrations were increased. Digestibility coefficients of OM, CP and NDF were not affected; however, the relationship between total intake and nutrient digestibility (DM, OM, NDF, ADF) increased with 2% DM olive oil. Compared with all treatments, the concentration of propionic acid increased by 16% with 4% olive oil. The intake of olive oil did not affect the protozoa population and live weight gain. Overall, the inclusion of olive oil in low concentrations (2% of DM) positively influences feed intake and nutrient digestibility in hair sheep lambs.

5.
Animals (Basel) ; 12(5)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35268141

ABSTRACT

This study was carried out to evaluate the residual feed intake (RFI), volatile fatty acid (VFA) production and enteric methane (CH4) from growing Pelibuey sheep. In this case, 12 non-castrated Pelibuey with an initial average live weight (LW) of 21.17 ± 3.87 kg and an age of 3 months, were housed in individual pens and fed a basal diet with 16% of crude protein and 11 MJ ME for 45 days. Dry matter intake (DMI) was measured and the daily weight gain (DWG) was calculated using a linear regression between the LW and experimental period. Mean metabolic live weight (LW0.75) was calculated. RFI was determined by linear regression with DWG and LW0.75 as independent variables. Lambs were classified as low, medium, and high RFI. Feed efficiency was determined as DWG/DMI. For determining rumen pH, ammonia nitrogen concentration NH3-N), and VFA, ruminal fluid was obtained using an esophageal probe on day 40. Feed intake of low RFI lambs was approximately 16% lower (p < 0.05) while growth rate was not significantly different. Their average energy loss, expressed as CH4 production per kilogram of metabolic weight, was 17% lower (p < 0.05).

6.
Animals (Basel) ; 12(1)2022 Jan 04.
Article in English | MEDLINE | ID: mdl-35011216

ABSTRACT

This study determined the effect of feeding Moringa oleifera (MO) leaf extracts to lactating ewes on the physicochemical composition of their milk and yogurt during storage (4 °C for 14 days) and the sensory acceptance of the yogurt. Over 45 days, 24 multiparous lactating Pelibuey and Katahdin ewes (two days in lactation) were randomly assigned to four groups: MO-0, basal diet (BD) + 0 mL MO; MO-20, BD + 20 mL MO; MO-40, BD + 40 mL MO; and MO-60, BD + 60 mL MO. In the milk, an increase of 6% in protein, 26% in leucine, 14% in ash, and 1% in the pH (6.71) was observed with MO-60. The density values decreased by 0.3% at a higher dose of MO compared to MO-0, while the nonfat solids (NFS) in the milk were similar between the treatments. In the yogurt, an increase of 5% in protein, 113% in leucine (MO-20), 9% in NFS, and a reduction of 2% in moisture with MO-60 was observed. The acidity reflected an inverse relationship to the pH, as did the moisture and NFS with MO-60. In conclusion, dietary supplementation with MO in lactating ewes did not have negative effects on the chemical composition of their yogurt during storage (14 days). Overall, feeding sheep with 20 mL of MO positively influenced the physicochemical composition of their milk and yogurt during storage.

7.
Animals (Basel) ; 11(6)2021 May 28.
Article in English | MEDLINE | ID: mdl-34071608

ABSTRACT

In order to meet consumer needs, the livestock industry is increasingly seeking natural feed additives with the ability to improve the efficiency of nutrient utilization, alternatives to antibiotics, and mitigate methane emissions in ruminants. Chitosan (CHI) is a polysaccharide with antimicrobial capability against protozoa and Gram-positive and -negative bacteria, fungi, and yeasts while naringin (NA) is a flavonoid with antimicrobial and antioxidant properties. First, an in vitro gas production experiment was performed adding 0, 1.5, 3.0 g/kg of CHI and NA under a completely randomized design. The substrate containing forage and concentrate in a 70:30 ratio on a dry matter (DM) basis. Compounds increased the concentration of propionic acid, and a significant reduction in methane production was observed with the inclusion of CHI at 1.5 g/kg in in vitro experiments (p < 0.001). In a dry matter rumen degradability study for 96 h, there were no differences in potential and effective degradability. In the in vivo study, six crossbred heifers fitted with rumen cannulas were assigned to a 6 × 6 Latin square design according to the following treatments: control (CTL), no additive; chitosan (CHI1, 1.5 g/kg DMI); (CHI2, 3.0 g/kg DMI); naringin (NA1, 1.5 g/kg DMI); (NA2, 3.0 g/kg DMI) and a mixture of CHI and NA (1.5 + 1.5 g/kg DMI) given directly through the rumen cannula. Additives did not affect rumen fermentation (p > 0.05), DM intake and digestibility of (p > 0.05), and enteric methane emissions (p > 0.05). CHI at a concentration of 1.5 g/kg DM in in vitro experiments had a positive effect on fermentation pattern increasing propionate and reduced methane production. In contrast, in the in vivo studies, there was not a positive effect on rumen fermentation, nor in enteric methane production in crossbred heifers fed a basal ration of tropical grass.

8.
Animals (Basel) ; 10(7)2020 Jun 29.
Article in English | MEDLINE | ID: mdl-32610660

ABSTRACT

The objective this study was to evaluate the effect of different doses of Moringa oleifera leaf extract (MOE) on milk production and milk composition in ewes and on preweaning performance of their lambs. Twenty-four lactating ewes were housed individually with their lambs and assigned to four groups in a completely randomized design. The treatments included a basal diet without MOE (MOE0) or a basal diet supplemented with either 20 mL MOE per ewe per day (MOE20), 40 mL MOE per ewe per day (MOE40) or 60 mL MOE per ewe per day (MOE60). Over 45 days, milk production was recorded weekly and individual milk samples were collected for chemical analysis. Milk yield, fat-corrected milk and daily yields were similar among the four treatments. The supply of MOE did not affect ewe weaning efficiency and average daily gain or litter weaning weight of the lambs. Overall, the results from this study showed that dietary supplementation of hydroalcoholic extracts of Moringa oleifera leaves at doses of 20, 40 or 60 mL/ewes/d in lactating ewes does not have negative effects on milk yield, milk composition or lamb performance.

9.
Animals (Basel) ; 10(5)2020 May 13.
Article in English | MEDLINE | ID: mdl-32414144

ABSTRACT

Methane produced by enteric fermentation contributes to the emission of greenhouse gases (GHG) into the atmosphere. Methane is one of the GHG resulting from anthropogenic activities with the greater global warming contribution. Ruminant production systems contribute between 18% and 33% of methane emissions. Due to this, there has been growing interest in finding feed alternatives which may help to mitigate methane production in the rumen. The presence of a vast range of secondary metabolites in tropical trees (coumarins, phenols, tannins, and saponins, among others) may be a valuable alternative to manipulate rumen fermentation and partially defaunate the rumen, and thus reduce enteric methane production. Recent reports suggest that it is possible to decrease methane emissions in sheep by up to 27% by feeding them saponins from the tea leaves of Camellia sinensis; partial defaunation (54%) of the rumen has been achieved using saponins from Sapindus saponaria. The aim of this review was to collect, analyze, and interpret scientific information on the potential of tropical trees and their secondary metabolites to mitigate methane emissions from ruminants.

10.
Animals (Basel) ; 10(3)2020 Mar 20.
Article in English | MEDLINE | ID: mdl-32244883

ABSTRACT

The study aimed to evaluate the relationship between udder measurements and milk yield (MY) in dairy Pelibuey ewes. Udder measurements were taken twice a week for eight weeks before (initial) and after (final) milking, including udder depth (UD), udder circumference (UC), udder width (UW), teat length (TL) and teat diameter (TD) in 38 multiparous ewes. Additionally, udder volume (UV) and the difference (VDF) between initial UV (UVi) and final (UVf) was calculated as VDF = UVi - UVf. The MY varied from 0.10 kg/d to 1.04 kg/d, with a mean of 0.39 kg/d, ± 0.18 kg/d. Initial UC (UCi) ranged from 25.80 cm to 53.30 cm, and VDF varied from 1 cm3 to 2418 cm3. The TL and TD were not correlated with MY (p > 0.05), while UCi, UVi and VDF were positively correlated with MY (p < 0.0001; r = from 0.66 to 0.74). For the prediction of MY, the obtained equations had an r2 ranging from 0.54 to 0.63. The UCi, UDf, UWi and UWf were included in these models (p < 0.05). It is concluded that there was an acceptable correlation (r = 0.60) between the measurements of the udder, the volume of the udder and the daily milk yield in Pelibuey sheep. When direct measurements of milk production cannot be performed in practice, the measurement of udders and their volume could be a viable alternative to estimate milk yield production as an indirect method.

11.
Trop Anim Health Prod ; 52(5): 2341-2347, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32162187

ABSTRACT

The aim of the present study was to develop and evaluate an equation to predict body weight (BW) using hip width (HW) in Pelibuey ewe lambs and ewes. Five hundred seventy-seven 2-month-old to 3-year-old, non-pregnant, non-lactating, clinically healthy ewe lambs and adult ewes with a mean BW of 34.7 ± 12.4 kg and HW of 15.6 ± 3.4 cm were considered. Three equations were evaluated: BW (kg): - 19.17 + 3.46 × HW (Eq. 1), BW (kg): - 17.79 + 3.25 × HW + 0.007 × HW2 (Eq. 2) and BW (kg): 0.39 × HW1.63 (Eq. 3). Independent data from 80 animals with similar characteristics (BW of 23.4 ± 10.9 kg and HW of 12 ± 3.1 cm) were also considered to evaluate the developed equations. The evaluation was based on the relationship between the observed and predicted values of BW analysed using a linear regression, the mean squared error of prediction (MSEP), the root MSEP (RMSEP) and the concordance correlation coefficients (CCCs). Additionally, cross-validation analyses were performed using the k-folds validation (k = 10) procedure. The correlation coefficient (r) between BW and HW was 0.94 (P < 0.001). The parameters for precision and accuracy showed that the proposed equations had high precision (R2 > 0.95%), accuracy (Cb > 0.98) and reproducibility (CCC > 0.96) in predicting the BW of ewe lambs and adult ewes. Equation (1) accurately predicted observed BW, with a bias (observed - predicted) of 4.3 kg and RMSEP of 9.68% with respect to the observed BW (random error of 84.23%); it also generated the best prediction according to the residual mean squared prediction error, coefficient of determination and mean absolute error. In conclusion, the highly correlated relationship between BW and HW in Pelibuey ewe lambs and adult ewes under humid tropic conditions enabled the development of mathematical models herein to estimate BW with an adequate goodness of fit. The linear model showed the best performance according to the goodness-of-fit evaluation and internal and external validation; hence, this model is proposed for use in both the experimental and commercial farms.


Subject(s)
Body Weight , Sheep/physiology , Algorithms , Animals , Female , Linear Models , Models, Biological , Reproducibility of Results
12.
Asian-Australas J Anim Sci ; 31(11): 1738-1746, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29103289

ABSTRACT

OBJECTIVE: The aim of the experiment was to assess the effect of increasing amounts of Leucaena leucocephala forage on dry matter intake (DMI), organic matter intake (OMI), enteric methane production, rumen fermentation pattern and protozoa population in cattle fed Pennisetum purpureum and housed in respiration chambers. METHODS: Five crossbred heifers (Bos taurus×Bos indicus) (BW: 295±6 kg) were fed chopped P. purpureum grass and increasing levels of L. leucocephala (0%, 20%, 40%, 60%, and 80% of dry matter [DM]) in a 5×5 Latin square design. RESULTS: The voluntary intake and methane production were measured for 23 h per day in respiration chambers; molar proportions of volatile fatty acids (VFAs) were determined at 6 h postprandial period. Molar concentration of VFAs in rumen liquor were similar (p>0.05) between treatments. However, methane production decreased linearly (p<0.005), recording a maximum reduction of up to ~61% with 80% of DM incorporation of L. leucocephala in the ration and no changes (p>0.05) in rumen protozoa population were found. CONCLUSION: Inclusion of 80% of L. leucocephala in the diet of heifers fed low-quality tropical forages has the capacity to reduce up to 61.3% enteric methane emission without affecting DMI, OMI, and protozoa population in rumen liquor.

13.
Trop Anim Health Prod ; 45(2): 577-83, 2013 Feb.
Article in English | MEDLINE | ID: mdl-22996698

ABSTRACT

The aim of the study was to evaluate the effect of graded levels of Enterolobium cyclocarpum pods in the ration on feed intake and digestibility by Pelibuey lambs. Five dietary treatments were imposed where ground pods replaced concentrate diet at 0, 20, 30, 40 and 50 % of dry matter (DM), respectively. The concentrate portion was composed of ground sorghum, soybean meal, cane molasses and minerals. Five entire Pelibuey lambs with initial bodyweight 34 ± 2 kg were allocated in the treatments in a 5 × 5 Latin square design. Values of dry matter intake (DMI) and dry matter (DMD) and organic matter (OMD) digestibility were measured and metabolisable energy intake (MEI) estimated. Rumen degradation constants for E. cyclocarpum were also measured. There were no differences (P > 0.05) in average DMI (86.6 g/kg(0.75)) and OMI (81.2 g/kg(0.75)) among treatments. As the level of incorporation of E. cyclocarpum pods increased, voluntary DMI and OMI increased, whereas apparent DMD and OMD decreased linearly. Average digestible DM (65 g/kg(0.75)) and OM (61 g/kg(0.75)) intakes were similar (P > 0.05) among treatments. Similarly, MEI (0.976 MJ ME kg(0.75)/day) was not different (P > 0.05) among treatments. The potential rumen degradation (A + B) of ground pods of E. cyclocarpum was 866.4 g/kg DM. Ground pods of E. cyclocarpum can be employed for lamb feeding up to 50 % of the ration, without affecting DMI, DM apparent digestibility and MEI.


Subject(s)
Animal Feed/analysis , Animal Husbandry/methods , Digestion/drug effects , Fabaceae/chemistry , Feeding Behavior/drug effects , Sheep, Domestic/physiology , Animals , Diet , Dose-Response Relationship, Drug , Feces/chemistry , Male , Mexico , Rumen/metabolism , Seeds/chemistry , Sheep, Domestic/growth & development , Tropical Climate
SELECTION OF CITATIONS
SEARCH DETAIL
...