Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Chemosphere ; 361: 142440, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38821133

ABSTRACT

Plastic polymers were largely added with chemical substances to be utilized in the items and product manufacturing. The leachability of these substances is a matter of concern given the wide amount of plastic waste, particularly in terrestrial environments, where soil represents a sink for these novel contaminants and a possible pathway of human health risk. In this study, we integrated genetic, molecular, and behavioral approaches to comparatively evaluate toxicological effects of plastic leachates, virgin and oxodegradable polypropylene (PP) and polyethylene (PE), in Drosophila melanogaster, a novel in vivo model organism for environmental monitoring studies and (eco)toxicological research. The results of this study revealed that while conventional toxicological endpoints such as developmental times and longevity remain largely unaffected, exposure to plastic leachates induces chromosomal abnormalities and transposable element (TE) activation in neural tissues. The combined effects of DNA damage and TE mobilization contribute to genome instability and increase the likelihood of LOH events, thus potentiating tumor growth and metastatic behavior ofRasV12 clones. Collectively, these findings indicate that plastic leachates exert genotoxic effects in Drosophila thus highlighting potential risks associated with leachate-related plastic pollution and their implications for ecosystems and human health.


Subject(s)
DNA Damage , Drosophila melanogaster , Plastics , Animals , Drosophila melanogaster/drug effects , Drosophila melanogaster/genetics , Plastics/toxicity , Polypropylenes/toxicity , Polyethylene/toxicity , Chromosome Aberrations/chemically induced , Environmental Monitoring , Mutagens/toxicity , DNA Transposable Elements , Mutagenicity Tests
2.
Cells ; 11(24)2022 12 13.
Article in English | MEDLINE | ID: mdl-36552798

ABSTRACT

Exposure to artificial radio frequency electromagnetic fields (RF-EMFs) has greatly increased in recent years, thus promoting a growing scientific and social interest in deepening the biological impact of EMFs on living organisms. The current legislation governing the exposure to RF-EMFs is based exclusively on their thermal effects, without considering the possible non-thermal adverse health effects from long term exposure to EMFs. In this study we investigated the biological non-thermal effects of low-level indoor exposure to RF-EMFs produced by WiFi wireless technologies, using Drosophila melanogaster as the model system. Flies were exposed to 2.4 GHz radiofrequency in a Transverse Electromagnetic (TEM) cell device to ensure homogenous controlled fields. Signals were continuously monitored during the experiments and regulated at non thermal levels. The results of this study demonstrate that WiFi electromagnetic radiation causes extensive heterochromatin decondensation and thus a general loss of transposable elements epigenetic silencing in both germinal and neural tissues. Moreover, our findings provide evidence that WiFi related radiofrequency electromagnetic fields can induce reactive oxygen species (ROS) accumulation, genomic instability, and behavioural abnormalities. Finally, we demonstrate that WiFi radiation can synergize with RasV12 to drive tumor progression and invasion. All together, these data indicate that radiofrequency radiation emitted from WiFi devices could exert genotoxic effects in Drosophila and set the stage to further explore the biological effects of WiFi electromagnetic radiation on living organisms.


Subject(s)
Drosophila melanogaster , Electromagnetic Fields , Animals , Electromagnetic Fields/adverse effects , Drosophila melanogaster/genetics , DNA Transposable Elements/genetics , Radio Waves/adverse effects , Genomic Instability
3.
Genetics ; 222(2)2022 09 30.
Article in English | MEDLINE | ID: mdl-35946576

ABSTRACT

In Drosophila chromosomal rearrangements can be maintained and are associated with karyotypic variability among populations from different geographic localities. The abundance of variability in gene arrangements among chromosomal arms is even greater when comparing more distantly related species and the study of these chromosomal changes has provided insights into the evolutionary history of species in the genus. In addition, the sequencing of genomes of several Drosophila species has offered the opportunity to establish the global pattern of genomic evolution, at both genetic and chromosomal level. The combined approaches of comparative analysis of syntenic blocks and direct physical maps on polytene chromosomes have elucidated changes in the orientation of genomic sequences and the difference between heterochromatic and euchromatic regions. Unfortunately, the centromeric heterochromatic regions cannot be studied using the cytological maps of polytene chromosomes because they are underreplicated and therefore reside in the chromocenter. In Drosophila melanogaster, a cytological map of the heterochromatin has been elaborated using mitotic chromosomes from larval neuroblasts. In the current work, we have expanded on that mapping by producing cytological maps of the mitotic heterochromatin in an additional 10 sequenced Drosophila species. These maps highlight 2 apparently different paths, for the evolution of the pericentric heterochromatin between the subgenera Sophophora and Drosophila. One path leads toward a progressive complexity of the pericentric heterochromatin (Sophophora) and the other toward a progressive simplification (Drosophila). These maps are also useful for a better understanding how karyotypes have been altered by chromosome arm reshuffling during evolution.


Subject(s)
Drosophila Proteins , Heterochromatin , Animals , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Heterochromatin/genetics , Polytene Chromosomes
4.
Cells ; 11(8)2022 04 09.
Article in English | MEDLINE | ID: mdl-35455964

ABSTRACT

Alzheimer's disease (AD) is an irreversible age-related neurodegenerative disorder clinically characterized by severe memory impairment, language deficits and cognitive decline. The major neuropathological hallmarks of AD include extracellular deposits of the ß-amyloid (Aß) peptides and cytoplasmic neurofibrillary tangles (NFTs) of hyperphosphorylated tau protein. The accumulation of plaques and tangles in the brain triggers a cascade of molecular events that culminate in neuronal damage and cell death. Despite extensive research, our understanding of the molecular basis of AD pathogenesis remains incomplete and a cure for this devastating disease is still not available. A growing body of evidence in different experimental models suggests that poly(ADP-ribose) polymerase-1 (PARP-1) overactivation might be a crucial component of the molecular network of interactions responsible for AD pathogenesis. In this work, we combined genetic, molecular and biochemical approaches to investigate the effects of two different PARP-1 inhibitors (olaparib and MC2050) in Drosophila models of Alzheimer's disease by exploring their neuroprotective and therapeutic potential in vivo. We found that both pharmacological inhibition and genetic inactivation of PARP-1 significantly extend lifespan and improve the climbing ability of transgenic AD flies. Consistently, PARP-1 inhibitors lead to a significant decrease of Aß42 aggregates and partially rescue the epigenetic alterations associated with AD in the brain. Interestingly, olaparib and MC2050 also suppress the AD-associated aberrant activation of transposable elements in neuronal tissues of AD flies.


Subject(s)
Alzheimer Disease , Neuroprotective Agents , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Drosophila/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Poly(ADP-ribose) Polymerase Inhibitors/therapeutic use
5.
iScience ; 25(1): 103702, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35036881

ABSTRACT

Huntington's disease (HD) is an autosomal dominant disorder with progressive motor dysfunction and cognitive decline. The disease is caused by a CAG repeat expansion in the IT15 gene, which elongates a polyglutamine stretch of the HD protein, Huntingtin. No therapeutic treatments are available, and new pharmacological targets are needed. Retrotransposons are transposable elements (TEs) that represent 40% and 30% of the human and Drosophila genomes and replicate through an RNA intermediate. Mounting evidence suggests that mammalian TEs are active during neurogenesis and may be involved in diseases of the nervous system. Here we show that TE expression and mobilization are increased in a Drosophila melanogaster HD model. By inhibiting TE mobilization with Reverse Transcriptase inhibitors, polyQ-dependent eye neurodegeneration and genome instability in larval brains are rescued and fly lifespan is increased. These results suggest that TE activation may be involved in polyQ-induced neurotoxicity and a potential pharmacological target.

6.
Chromosoma ; 130(2-3): 103-111, 2021 09.
Article in English | MEDLINE | ID: mdl-34128099

ABSTRACT

Heterochromatin protein 1 (HP1) is a non-histone chromosomal protein first identified in Drosophila as a major component of constitutive heterochromatin, required for stable epigenetic gene silencing in many species including humans. Over the years, several studies have highlighted additional roles of HP1 in different cellular processes including telomere maintenance, DNA replication and repair, chromosome segregation and, surprisingly, positive regulation of gene expression. In this review, we briefly summarize past research and recent results supporting the unexpected and emerging role of HP1 in activating gene expression. In particular, we discuss the role of HP1 in post-transcriptional regulation of mRNA processing because it has proved decisive in the control of germline stem cells homeostasis in Drosophila and has certainly added a new dimension to our understanding on HP1 targeting and functions in epigenetic regulation of stem cell behaviour.


Subject(s)
Chromobox Protein Homolog 5 , Drosophila Proteins , Animals , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Epigenesis, Genetic , Gene Expression Regulation , Heterochromatin/metabolism , Humans , Stem Cells/metabolism
7.
Proc Natl Acad Sci U S A ; 116(36): 17943-17950, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31399546

ABSTRACT

Previous studies have shown that heat shock stress may activate transposable elements (TEs) in Drosophila and other organisms. Such an effect depends on the disruption of a chaperone complex that is normally involved in biogenesis of Piwi-interacting RNAs (piRNAs), the largest class of germline-enriched small noncoding RNAs implicated in the epigenetic silencing of TEs. However, a satisfying picture of how chaperones could be involved in repressing TEs in germ cells is still unknown. Here we show that, in Drosophila, heat shock stress increases the expression of TEs at a posttranscriptional level by affecting piRNA biogenesis through the action of the inducible chaperone Hsp70. We found that stress-induced TE activation is triggered by an interaction of Hsp70 with the Hsc70-Hsp90 complex and other factors all involved in piRNA biogenesis in both ovaries and testes. Such interaction induces a displacement of all such factors to the lysosomes, resulting in a functional collapse of piRNA biogenesis. This mechanism has clear evolutionary implications. In the presence of drastic environmental changes, Hsp70 plays a key dual role in increasing both the survival probability of individuals and the genetic variability in their germ cells. The consequent increase of genetic variation in a population potentiates evolutionary plasticity and evolvability.


Subject(s)
DNA Transposable Elements , HSP70 Heat-Shock Proteins/metabolism , Stress, Physiological , Transcriptional Activation , Evolution, Molecular , Gene Silencing , Heat-Shock Response/genetics , Models, Biological , Protein Binding , RNA Interference
8.
Chromosoma ; 128(4): 503-520, 2019 12.
Article in English | MEDLINE | ID: mdl-31203392

ABSTRACT

Centromeres are epigenetically determined chromatin structures that specify the assembly site of the kinetochore, the multiprotein machinery that binds microtubules and mediates chromosome segregation during mitosis and meiosis. The centromeric protein A (CENP-A) and its Drosophila orthologue centromere identifier (Cid) are H3 histone variants that replace the canonical H3 histone in centromeric nucleosomes of eukaryotes. CENP-A/Cid is required for recruitment of other centromere and kinetochore proteins and its deficiency disrupts chromosome segregation. Despite the many components that are known to cooperate in centromere function, the complete network of factors involved in CENP-A recruitment remains to be defined. In Drosophila, the Trx-G proteins localize along the heterochromatin with specific patterns and some of them localize to the centromeres of all chromosomes. Here, we show that the Trx, Ash1, and CBP proteins are required for the correct chromosome segregation and that Ash1 and CBP mediate for Cid/CENP-A recruitment at centromeres through post-translational histone modifications. We found that centromeric H3 histone is consistently acetylated in K27 by CBP and that nej and ash1 silencing respectively causes a decrease in H3K27 acetylation and H3K4 methylation along with an impairment of Cid loading.


Subject(s)
Centromere Protein A/metabolism , Centromere/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Transcription Factors/metabolism , p300-CBP Transcription Factors/metabolism , Acetylation , Animals , Drosophila melanogaster/metabolism , Protein Processing, Post-Translational
9.
Sci Rep ; 9(1): 4372, 2019 03 13.
Article in English | MEDLINE | ID: mdl-30867469

ABSTRACT

A very important open question in stem cells regulation is how the fine balance between GSCs self-renewal and differentiation is orchestrated at the molecular level. In the past several years much progress has been made in understanding the molecular mechanisms underlying intrinsic and extrinsic controls of GSC regulation but the complex gene regulatory networks that regulate stem cell behavior are only partially understood. HP1 is a dynamic epigenetic determinant mainly involved in heterochromatin formation, epigenetic gene silencing and telomere maintenance. Furthermore, recent studies have revealed the importance of HP1 in DNA repair, sister chromatid cohesion and, surprisingly, in positive regulation of gene expression. Here, we show that HP1 plays a crucial role in the control of GSC homeostasis in Drosophila. Our findings demonstrate that HP1 is required intrinsically to promote GSC self-renewal and progeny differentiation by directly stabilizing the transcripts of key genes involved in GSCs maintenance.


Subject(s)
Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Drosophila/cytology , Drosophila/metabolism , Germ Cells/metabolism , Stem Cells/metabolism , Animals , Chromobox Protein Homolog 5 , Female , Germ Cells/cytology , Infertility, Female/genetics , Oogenesis/genetics , Ovary/embryology , Ovary/metabolism , Phenotype , RNA Interference , RNA Processing, Post-Transcriptional , Stem Cells/cytology
10.
Int J Mol Sci ; 20(3)2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30736391

ABSTRACT

Alzheimer's disease (AD) is the most common neurodegenerative disorder and the primary form of dementia in the elderly. One of the main features of AD is the increase in amyloid-beta (Aß) peptide production and aggregation, leading to oxidative stress, neuroinflammation and neurodegeneration. Polyphenols are well known for their antioxidant, anti-inflammatory and neuroprotective effects and have been proposed as possible therapeutic agents against AD. Here, we investigated the effects of a polyphenolic extract of Arabidopsis thaliana (a plant belonging to the Brassicaceae family) on inflammatory response induced by Aß. BV2 murine microglia cells treated with both Aß25⁻35 peptide and extract showed a lower pro-inflammatory (IL-6, IL-1ß, TNF-α) and a higher anti-inflammatory (IL-4, IL-10, IL-13) cytokine production compared to cells treated with Aß only. The activation of the Nrf2-antioxidant response element signaling pathway in treated cells resulted in the upregulation of heme oxygenase-1 mRNA and in an increase of NAD(P)H:quinone oxidoreductase 1 activity. To establish whether the extract is also effective against Aß-induced neurotoxicity in vivo, we evaluated its effect on the impaired climbing ability of AD Drosophila flies expressing human Aß1⁻42. Arabidopsis extract significantly restored the locomotor activity of these flies, thus confirming its neuroprotective effects also in vivo. These results point to a protective effect of the Arabidopsis extract in AD, and prompt its use as a model in studying the impact of complex mixtures derived from plant-based food on neurodegenerative diseases.


Subject(s)
Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Arabidopsis/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Polyphenols/chemistry , Polyphenols/pharmacology , Alzheimer Disease/drug therapy , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amyloid beta-Peptides/metabolism , Cell Line , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation/drug effects , Humans , Inflammation Mediators/metabolism , Locomotion/drug effects , Mass Spectrometry , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Neurons/drug effects , Neurons/metabolism , Phytochemicals/chemistry , Protein Transport
11.
Stress ; 21(6): 575-579, 2018 11.
Article in English | MEDLINE | ID: mdl-29996702

ABSTRACT

Transposable elements (TEs) are conserved mobile genetic elements that are highly abundant in most eukaryotic genomes. Although the exact function of TEs is still largely unknown, it is increasingly clear that they are significantly modulated in response to stress in a wide range of organisms, either directly or indirectly through regulation of epigenetic silencing. We investigated the effect of repeated restraint stress (2 h a day, for 5 d) on transcription levels of LINE-1 (L1) retrotransposon in the brain of inbred BALB/c, DBA/2, C57BL/6N, and outbred CD1 mice. Repeated restraint stress induced strain and brain region-specific modulation of L1 activity. We observed a significant derepression of L1 transcription in the hippocampus (HIPP) of BALB/c mice and a significant downregulation in the hippocampus of C57BL/6N mice. No significant change in L1 expression was found in the other strains and brain regions. These findings indicate in mice the control of transposons expression as an additional mechanism in stress-induced pathophysiological responses, demonstrating that their regulation is highly dependent on the strain genetic background and the brain region. Lay summary Hippocampal expression of the transposon L1 is significantly altered by repeated restraint stress in mice. L1 modulation is not only region specific, but also strain dependent, suggesting that the genetic background is an important determinant of L1 response to environmental stimuli.


Subject(s)
Brain/metabolism , DNA Transposable Elements/genetics , Long Interspersed Nucleotide Elements/genetics , Stress, Psychological/genetics , Amygdala/metabolism , Animals , Hippocampus/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Prefrontal Cortex/metabolism , Restraint, Physical , Stress, Psychological/metabolism
12.
Genetics ; 206(4): 1995-2006, 2017 08.
Article in English | MEDLINE | ID: mdl-28576865

ABSTRACT

One of the most fascinating scientific problems, and a subject of intense debate, is that of the mechanisms of biological evolution. In this context, Waddington elaborated the concepts of "canalization and assimilation" to explain how an apparently somatic variant induced by stress could become heritable through the germline in Drosophila He resolved this seemingly Lamarckian phenomenon by positing the existence of cryptic mutations that can be expressed and selected under stress. To investigate the relevance of such mechanisms, we performed experiments following the Waddington procedure, then isolated and fixed three phenotypic variants along with another induced mutation that was not preceded by any phenocopy. All the fixed mutations we looked at were actually generated de novo by DNA deletions or transposon insertions, highlighting a novel mechanism for the assimilation process. Our study shows that heat-shock stress produces both phenotypic variants and germline mutations, and suggests an alternative explanation to that of Waddington for the apparent assimilation of an acquired character. The selection of the variants, under stress, for a number of generations allows for the coselection of newly induced corresponding germline mutations, making the phenotypic variants appear heritable.


Subject(s)
Evolution, Molecular , Germ-Line Mutation , Models, Genetic , Selection, Genetic , Animals , DNA Transposable Elements/genetics , Drosophila/genetics , Heat-Shock Response , Mutation Rate , Phenotype
13.
Sci Rep ; 7: 45022, 2017 04 03.
Article in English | MEDLINE | ID: mdl-28367969

ABSTRACT

The human Cranio Facial Development Protein 1 (Cfdp1) gene maps to chromosome 16q22.2-q22.3 and encodes the CFDP1 protein, which belongs to the evolutionarily conserved Bucentaur (BCNT) family. Craniofacial malformations are developmental disorders of particular biomedical and clinical interest, because they represent the main cause of infant mortality and disability in humans, thus it is important to understand the cellular functions and mechanism of action of the CFDP1 protein. We have carried out a multi-disciplinary study, combining cell biology, reverse genetics and biochemistry, to provide the first in vivo characterization of CFDP1 protein functions in human cells. We show that CFDP1 binds to chromatin and interacts with subunits of the SRCAP chromatin remodeling complex. An RNAi-mediated depletion of CFDP1 in HeLa cells affects chromosome organization, SMC2 condensin recruitment and cell cycle progression. Our findings provide new insight into the chromatin functions and mechanisms of the CFDP1 protein and contribute to our understanding of the link between epigenetic regulation and the onset of human complex developmental disorders.


Subject(s)
Chromatin Assembly and Disassembly/genetics , Chromatin/genetics , Chromatin/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Adenosine Triphosphatases/metabolism , Cell Line , Chromosomes/genetics , DNA-Binding Proteins/metabolism , Gene Expression , HeLa Cells , Humans , Mitosis , Multiprotein Complexes/metabolism , Nuclear Proteins , Phosphoproteins/chemistry , Protein Binding , Protein Interaction Domains and Motifs , Protein Transport
14.
Sci Rep ; 7: 41559, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28139767

ABSTRACT

Endoribonucleases participate in almost every step of eukaryotic RNA metabolism, acting either as degradative or biosynthetic enzymes. We previously identified the founding member of the Eukaryotic EndoU ribonuclease family, whose components display unique biochemical features and are flexibly involved in important biological processes, such as ribosome biogenesis, tumorigenesis and viral replication. Here we report the discovery of the CG3303 gene product, which we named DendoU, as a novel family member in Drosophila. Functional characterisation revealed that DendoU is essential for Drosophila viability and nervous system activity. Pan-neuronal silencing of dendoU resulted in fly immature phenotypes, highly reduced lifespan and dramatic motor performance defects. Neuron-subtype selective silencing showed that DendoU is particularly important in cholinergic circuits. At the molecular level, we unveiled that DendoU is a positive regulator of the neurodegeneration-associated protein dTDP-43, whose downregulation recapitulates the ensemble of dendoU-dependent phenotypes. This interdisciplinary work, which comprehends in silico, in vitro and in vivo studies, unveils a relevant role for DendoU in Drosophila nervous system physio-pathology and highlights that DendoU-mediated neurotoxicity is, at least in part, contributed by dTDP-43 loss-of-function.


Subject(s)
DNA-Binding Proteins/metabolism , Drosophila Proteins/metabolism , Drosophila/genetics , Drosophila/metabolism , Endoribonucleases/genetics , Neurodegenerative Diseases/etiology , Neurodegenerative Diseases/metabolism , Amino Acid Sequence , Animals , Drosophila Proteins/genetics , Endoribonucleases/metabolism , Gene Expression Profiling , Gene Silencing , Loss of Function Mutation , Motor Activity , Neurons/metabolism , Phenotype , Sequence Analysis, DNA
15.
PLoS Genet ; 12(8): e1006212, 2016 08.
Article in English | MEDLINE | ID: mdl-27513559

ABSTRACT

The term heterochromatin has been long considered synonymous with gene silencing, but it is now clear that the presence of transcribed genes embedded in pericentromeric heterochromatin is a conserved feature in the evolution of eukaryotic genomes. Several studies have addressed the epigenetic changes that enable the expression of genes in pericentric heterochromatin, yet little is known about the evolutionary processes through which this has occurred. By combining genome annotation analysis and high-resolution cytology, we have identified and mapped 53 orthologs of D. melanogaster heterochromatic genes in the genomes of two evolutionarily distant species, D. pseudoobscura and D. virilis. Our results show that the orthologs of the D. melanogaster heterochromatic genes are clustered at three main genomic regions in D. virilis and D. pseudoobscura. In D. virilis, the clusters lie in the middle of euchromatin, while those in D. pseudoobscura are located in the proximal portion of the chromosome arms. Some orthologs map to the corresponding Muller C element in D. pseudoobscura and D. virilis, while others localize on the Muller B element, suggesting that chromosomal rearrangements that have been instrumental in the fusion of two separate elements involved the progenitors of genes currently located in D. melanogaster heterochromatin. These results demonstrate an evolutionary repositioning of gene clusters from ancestral locations in euchromatin to the pericentromeric heterochromatin of descendent D. melanogaster chromosomes. Remarkably, in both D. virilis and D. pseudoobscura the gene clusters show a conserved association with the HP1a protein, one of the most highly evolutionarily conserved epigenetic marks. In light of these results, we suggest a new scenario whereby ancestral HP1-like proteins (and possibly other epigenetic marks) may have contributed to the evolutionary repositioning of gene clusters into heterochromatin.


Subject(s)
Drosophila/genetics , Euchromatin/genetics , Evolution, Molecular , Heterochromatin/genetics , Animals , Chromobox Protein Homolog 5 , Chromosomal Proteins, Non-Histone/genetics , Chromosome Mapping , Comparative Genomic Hybridization , Epigenesis, Genetic/genetics , Genome, Insect , Genomics , Molecular Sequence Annotation , Multigene Family , Species Specificity
16.
G3 (Bethesda) ; 4(9): 1709-16, 2014 Jul 21.
Article in English | MEDLINE | ID: mdl-25053704

ABSTRACT

The dosage effect of Y-chromosome heterochromatin on suppression of position effect variegation (PEV) has long been well-known in Drosophila. The phenotypic effects of increasing the overall dosage of Y heterochromatin have also been demonstrated; hyperploidy of the Y chromosome produces male sterility and many somatic defects including variegation and abnormal legs and wings. This work addresses whether the suppression of position effect variegation (PEV) is a general feature of the heterochromatin (independent of the chromosome of origin) and whether a hyperdosage of heterochromatin can affect viability. The results show that the suppression of PEV is a general feature of any type of constitutive heterochromatin and that the intensity of suppression depends on its amount instead of some mappable factor on it. We also describe a clear dosage effect of Y heterochromatin on the viability of otherwise wild-type embryos and the modification of that effect by a specific gene mutation. Together, our results indicate that the correct balance between heterochromatin and euchromatin is essential for the normal genome expression and that this balance is genetically controlled.


Subject(s)
Drosophila/genetics , Heterochromatin/genetics , Animals , Euchromatin/genetics , Female , Male , X Chromosome , Y Chromosome
17.
Chromosoma ; 123(4): 345-54, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24752783

ABSTRACT

The mechanisms of biological evolution have always been, and still are, the subject of intense debate and modeling. One of the main problems is how the genetic variability is produced and maintained in order to make the organisms adaptable to environmental changes and therefore capable of evolving. In recent years, it has been reported that, in flies and plants, mutations in Hsp90 gene are capable to induce, with a low frequency, many different developmental abnormalities depending on the genetic backgrounds. This has suggested that the reduction of Hsp90 amount makes different development pathways more sensitive to hidden genetic variability. This suggestion revitalized a classical debate around the original Waddington hypothesis of canalization and genetic assimilation making Hsp90 the prototype of morphological capacitor. Other data have also suggested a different mechanism that revitalizes another classic debate about the response of genome to physiological and environmental stress put forward by Barbara McClintock. That data demonstrated that Hsp90 is involved in repression of transposon activity by playing a significant role in piwi-interacting RNA (piRNAs)-dependent RNA interference (RNAi) silencing. The important implication is that the fixed phenotypic abnormalities observed in Hsp90 mutants are probably related to de novo induced mutations by transposon activation. In this case, Hsp90 could be considered as a mutator. In the present theoretical paper, we discuss several possible implications about environmental stress, transposon, and evolution offering also a support to the concept of evolvability.


Subject(s)
DNA Transposable Elements/genetics , Environment , Inheritance Patterns/genetics , Animals , Biological Evolution , Phenotype , Stress, Physiological
18.
J Cell Sci ; 127(Pt 11): 2577-88, 2014 Jun 01.
Article in English | MEDLINE | ID: mdl-24652835

ABSTRACT

The evolutionarily conserved family of Bucentaur (BCNT) proteins exhibits a widespread distribution in animal and plants, yet its biological role remains largely unknown. Using Drosophila melanogaster as a model organism, we investigated the in vivo role of the Drosophila BCNT member called YETI. We report that loss of YETI causes lethality before pupation and defects in higher-order chromatin organization, as evidenced by severe impairment in the association of histone H2A.V, nucleosomal histones and epigenetic marks with polytene chromosomes. We also find that YETI binds to polytene chromosomes through its conserved BCNT domain and interacts with the histone variant H2A.V, HP1a and Domino-A (DOM-A), the ATPase subunit of the DOM/Tip60 chromatin remodeling complex. Furthermore, we identify YETI as a downstream target of the Drosophila DOM-A. On the basis of these results, we propose that YETI interacts with H2A.V-exchanging machinery, as a chaperone or as a new subunit of the DOM/Tip60 remodeling complex, and acts to regulate the accumulation of H2A.V at chromatin sites. Overall, our findings suggest an unanticipated role of YETI protein in chromatin organization and provide, for the first time, mechanistic clues on how BCNT proteins control development in multicellular organisms.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/physiology , Phosphoproteins/metabolism , Polytene Chromosomes/metabolism , Transcription Factors/metabolism , Animals , Animals, Genetically Modified , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cells, Cultured , Chromatin Assembly and Disassembly/genetics , Conserved Sequence/genetics , Drosophila Proteins/genetics , Evolution, Molecular , Histones/metabolism , Mutation/genetics , Nuclear Proteins , Phosphoproteins/genetics , Protein Binding , Signal Transduction
19.
Genet Res Int ; 2012: 324293, 2012.
Article in English | MEDLINE | ID: mdl-22567384

ABSTRACT

The Stellate-made crystals formation in spermatocytes is the phenotypic manifestation of a disrupted crystal-Stellate interaction in testes of Drosophila melanogaster. Stellate silencing is achieved by the piRNA pathway, but many features still remain unknown. Here we outline the important role of the crystal-Stellate modifiers. These have shed light on the piRNA pathways that defend genome integrity against transposons and other repetitive elements in the gonads. In particular, we illustrate the finding that HSP90 participates in the molecular pathways of piRNA production. This observation has relevance for the mechanisms underlying the evolutionary canalization process.

20.
Fly (Austin) ; 4(4): 299-301, 2010.
Article in English | MEDLINE | ID: mdl-20855965

ABSTRACT

HP1 is a conserved prototype protein that plays an essential role in heterochromatin formation and epigenetic gene silencing through its interaction with histone methyltransferase enzymes (HMTases) and the histone H3 at lysine 9 (H3-MeK9). HP1 is also involved in telomere capping and, more surprisingly, in positive regulation of gene expression. Recently, a wide expression analysis, using a RIP-chip assays (RNA-immunoprecipitation on microarrays), has shown that HP1 associates with the transcripts of more than one hundred euchromatic genes and interacts with the heterogeneous nuclear ribonucleoproteins (hnRNPs) that are known to be involved in RNA processing. By these results, HP1 seems to be part of a complex that stabilizes RNA transcripts. Though previously unsuspected, it was also found that HP1-interacting hnRNPs have a functional role in heterochromatin formation. These proteins bind heterochromatin and are dominant suppressors of position effect variegation. Taken together, the results in the paper by Piacentini et al. open a window on a possible new conceptual landscape in which similar epigenetic mechanisms could have a significant role, both in the metabolism of RNA transcripts and in heterochromatin formation, producing opposite functional effects. These data seem to establish a functional link between euchromatin and heterochromatin.


Subject(s)
Chromosomal Proteins, Non-Histone/physiology , Drosophila Proteins/physiology , Drosophila melanogaster/genetics , Gene Expression Regulation , Up-Regulation , Animals , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/metabolism , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Euchromatin/genetics , Euchromatin/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/metabolism , Heterogeneous-Nuclear Ribonucleoproteins/physiology , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...