Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 80
Filter
1.
J Transl Med ; 22(1): 669, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026203

ABSTRACT

BACKGROUND: Multimorbidity (MM) is generally defined as the presence of 2 or more chronic diseases in the same patient and seems to be frequently associated with frailty and poor quality of life. However, the complex interplay between MM and functional status in hospitalized older patients has not been fully elucidated so far. Here, we implemented a 2-step approach, combining cluster analysis and association rule mining to explore how patterns of MM and disease associations change as a function of disability. METHODS: This retrospective cohort study included 3366 hospitalized older patients discharged from acute care units of Ancona and Cosenza sites of Italian National Institute on Aging (INRCA-IRCCS) between 2011 and 2017. Cluster analysis and association rule mining (ARM) were used to explore patterns of MM and disease associations in the whole population and after stratifying by dependency in activities of daily living (ADL) at discharge. Sensitivity analyses in men and women were conducted to test for robustness of study findings. RESULTS: Out of 3366 included patients, 78% were multimorbid. According to functional status, 22.2% of patients had no disability in ADL (functionally independent group), 22.7% had 1 ADL dependency (mildly dependent group), and 57.4% 2 or more ADL impaired (moderately-severely dependent group). Two main MM clusters were identified in the whole general population and in single ADL groups. ARM revealed interesting within-cluster disease associations, characterized by high lift and confidence. Specifically, in the functionally independent group, the most significant ones involved atrial fibrillation (AF)-anemia and chronic kidney disease (CKD) (lift = 2.32), followed by coronary artery disease (CAD)-AF and heart failure (HF) (lift = 2.29); in patients with moderate-severe ADL disability, the most significant ARM involved CAD-HF and AF (lift = 1.97), thyroid dysfunction and AF (lift = 1.75), cerebrovascular disease (CVD)-CAD and AF (lift = 1.55), and hypertension-anemia and CKD (lift = 1.43). CONCLUSIONS: Hospitalized older patients have high rates of MM and functional impairment. Combining cluster analysis to ARM may assist physicians in discovering unexpected disease associations in patients with different ADL status. This could be relevant in the view of individuating personalized diagnostic and therapeutic approaches, according to the modern principles of precision medicine.


Subject(s)
Activities of Daily Living , Hospitalization , Multimorbidity , Humans , Male , Female , Aged , Cluster Analysis , Aged, 80 and over , Functional Status , Data Mining , Retrospective Studies
2.
Cardiovasc Diabetol ; 23(1): 250, 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39003492

ABSTRACT

BACKGROUND: Individuals with type 2 diabetes (T2D) face an increased mortality risk, not fully captured by canonical risk factors. Biological age estimation through DNA methylation (DNAm), i.e. the epigenetic clocks, is emerging as a possible tool to improve risk stratification for multiple outcomes. However, whether these tools predict mortality independently of canonical risk factors in subjects with T2D is unknown. METHODS: Among a cohort of 568 T2D patients followed for 16.8 years, we selected a subgroup of 50 subjects, 27 survived and 23 deceased at present, passing the quality check and balanced for all risk factors after propensity score matching. We analyzed DNAm from peripheral blood leukocytes using the Infinium Human MethylationEPIC BeadChip (Illumina) to evaluate biological aging through previously validated epigenetic clocks and assess the DNAm-estimated levels of selected inflammatory proteins and blood cell counts. We tested the associations of these estimates with mortality using two-stage residual-outcome regression analysis, creating a reference model on data from the group of survived patients. RESULTS: Deceased subjects had higher median epigenetic age expressed with DNAmPhenoAge algorithm (57.49 [54.72; 60.58] years. vs. 53.40 [49.73; 56.75] years; p = 0.012), and accelerated DunedinPoAm pace of aging (1.05 [1.02; 1.11] vs. 1.02 [0.98; 1.06]; p = 0.012). DNAm PhenoAge (HR 1.16, 95% CI 1.05-1.28; p = 0.004) and DunedinPoAm (HR 3.65, 95% CI 1.43-9.35; p = 0.007) showed an association with mortality independently of canonical risk factors. The epigenetic predictors of 3 chronic inflammation-related proteins, i.e. CXCL10, CXCL11 and enRAGE, C-reactive protein methylation risk score and DNAm-based estimates of exhausted CD8 + T cell counts were higher in deceased subjects when compared to survived. CONCLUSIONS: These findings suggest that biological aging, as estimated through existing epigenetic tools, is associated with mortality risk in individuals with T2D, independently of common risk factors and that increased DNAm-surrogates of inflammatory protein levels characterize deceased T2D patients. Replication in larger cohorts is needed to assess the potential of this approach to refine mortality risk in T2D.


Subject(s)
DNA Methylation , Diabetes Mellitus, Type 2 , Epigenesis, Genetic , Humans , Diabetes Mellitus, Type 2/mortality , Diabetes Mellitus, Type 2/diagnosis , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/blood , Middle Aged , Male , Female , Risk Factors , Risk Assessment , Age Factors , Time Factors , Aged , Prognosis , Aging/genetics , Genetic Markers , Inflammation Mediators/blood , Predictive Value of Tests
4.
Mech Ageing Dev ; 219: 111934, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38604436

ABSTRACT

The management of geriatric cardiovascular disease (CVD) patients with multimorbidity remains challenging and could potentially be improved by integrating clinical data with innovative prognostic biomarkers. In this context, the analysis of circulating analytes, including cell-free DNA (cfDNA), appears particularly promising. Here, we investigated circulating cfDNA (measured through the quantification of 247 bp and 115 bp Alu genomic fragments) in a cohort of 244 geriatric CVD patients with multimorbidity hospitalised for acute CVD or non-CVD events. Survival analysis showed a direct association between Alu 247 cfDNA abundance and risk of death, particularly evident in the first six months after admission for acute CVD events. Higher plasma cfDNA concentration was associated with mortality in the same period of time. The cfDNA integrity (Alu 247/115), although not associated with outcome, appeared to be useful in discriminating patients in whom Alu 247 cfDNA abundance is most effective as a prognostic biomarker. The cfDNA parameters were associated with several biochemical markers of inflammation and myocardial damage. In conclusion, an increase in plasma cfDNA abundance at hospital admission is indicative of a higher risk of death in geriatric CVD patients, especially after acute CVD events, and its analysis may be potentially useful for risk stratification.


Subject(s)
Biomarkers , Cardiovascular Diseases , Cell-Free Nucleic Acids , Humans , Male , Female , Cardiovascular Diseases/blood , Cardiovascular Diseases/mortality , Aged , Cell-Free Nucleic Acids/blood , Biomarkers/blood , Aged, 80 and over , Prognosis , Risk Factors
5.
Schizophr Res ; 268: 193-204, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493023

ABSTRACT

BACKGROUND: There is a relative lack of research evaluating the outcomes when treatment guidelines or algorithms for psychotic disorders are followed. This systematic review and meta-analysis determined the response rates to antipsychotic medications at different stages of these algorithms and whether these response rates differ in first episode cohorts. METHODS: Data sources: A systematic search strategy was conducted across four databases PubMed, EMBASE, PsycINFO (Ovid) and CINAHL. Studies that had sequential trials of different antipsychotic medications were included. A meta-analysis of proportions was performed using random effects models and sub-group analysis in first episode psychosis studies. RESULTS: Of the 4078 unique articles screened, fourteen articles, from nine unique studies, were eligible and included 2522 participants. The proportion who experienced a response to any antipsychotic in the first stage of an algorithm was 0.53 (95 % C.I.:0.38,0.68) and this decreased to 0.26 (95 % C.I.:0.15,0.39) in the second stage. When clozapine was used in the third stage, the proportion that achieved a response was 0.43 (95 % C.I. 0.19, 0.69) compared to 0.26 (95 % C.I.:0.05,0.54) if a different antipsychotic was used. Four studies included 907 participants with a first episode of psychosis and the proportions that achieved a response were: 1st stage: 0.63 (95 % C.I.: 0.45, 0.79); 2nd stage: 0.34 (95 % C.I.:0.16,0.55); clozapine 3rd stage: 0.45 (95 % C.I.:0.0,0.97), different antipsychotic 3rd stage: 0.15 (95 % C.I.,0.01,0.37). DISCUSSION: These findings support the recommendation to have a trial of clozapine after two other antipsychotic medications have been found to be ineffective.


Subject(s)
Algorithms , Antipsychotic Agents , Psychotic Disorders , Humans , Antipsychotic Agents/therapeutic use , Psychotic Disorders/drug therapy , Practice Guidelines as Topic/standards
6.
Aging Dis ; 15(4): 1726-1747, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38300639

ABSTRACT

Aging in the healthy brain is characterized by a low-grade, chronic, and sterile inflammatory process known as neuroinflammaging. This condition, mainly consisting in an up-regulation of the inflammatory response at the brain level, contributes to the pathogenesis of age-related neurodegenerative disorders. Development of this proinflammatory state involves the interaction between genetic and environmental factors, able to induce age-related epigenetic modifications. Indeed, the exposure to environmental compounds, drugs, and infections, can contribute to epigenetic modifications of DNA methylome, histone fold proteins, and nucleosome positioning, leading to epigenetic modulation of neuroinflammatory responses. Furthermore, some epigenetic modifiers, which combine and interact during the life course, can contribute to modeling of epigenome dynamics to sustain, or dampen the neuroinflammatory phenotype. The aim of this review is to summarize current knowledge about neuroinflammaging with a particular focus on epigenetic mechanisms underlying the onset and progression of neuroinflammatory cascades in the central nervous system; furthermore, we describe some diagnostic biomarkers that may contribute to increase diagnostic accuracy and help tailor therapeutic strategies in patients with neurodegenerative diseases.


Subject(s)
Aging , Epigenesis, Genetic , Neurodegenerative Diseases , Humans , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Aging/genetics , Inflammation/genetics , Neuroinflammatory Diseases/pathology , Brain/metabolism , Brain/pathology , Biomarkers/metabolism
7.
Aging Dis ; 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38377022

ABSTRACT

COVID-19 remains a serious concern for elderly individuals with underlying comorbidities. SARS-CoV-2 can target and damage mitochondria, potentially leading to mutations in mitochondrial DNA (mtDNA). This study aimed to evaluate single nucleotide substitutions in mtDNA and analyze their correlation with inflammatory biomarkers in elderly COVID-19 patients. A total of 30 COVID-19 patients and 33 older adult controls without COVID-19 (aged over 65 years) were enrolled. mtDNA was extracted from buffy coat samples and sequenced using a chip-based resequencing system (MitoChip v2.0) which detects both homoplasmic and heteroplasmic mtDNA variants (40-60% heteroplasmy), and allows the assessment of low-level heteroplasmy (<10% heteroplasmy). Serum concentrations of IL-6, IFN-α, TNF-α and IL-10 were determined in patients by a high-sensitivity immunoassay. We found a higher burden of total heteroplasmic variants in COVID-19 patients compared to controls with a selective increment in ND1 and COIII genes. Low-level heteroplasmy was significantly elevated in COVID-19 patients, especially in genes of the respiratory complex I. Both heteroplasmic variant burden and low-level heteroplasmy were associated with increased levels of IL-6, TNF-α, and IFN-α. These findings suggest that SARS-CoV-2 may induce mtDNA mutations that are related to the degree of inflammation.

8.
Aging Clin Exp Res ; 36(1): 9, 2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38281243

ABSTRACT

BACKGROUND: Uncontrolled blood pressure (BP) is a risk factor for Mild Cognitive Impairment (MCI) and dementia. AIMS: This study examined the relationship between BP and clinical/cognitive/neuropsychological aspects in MCI individuals. METHODS: MCI patients underwent clinical, functional, cognitive and metacognitive, as well as psychological assessments. Social network, lifestyle characteristics, and medication prescriptions were also evaluated. Each patient underwent BP measurements. RESULTS: Lower values of systolic BP (SBP), diastolic BP (DBP), and mean arterial pressure (MAP) were associated with poorer cognitive performance. Notably, MAP showed greater capability in detecting impairments in attention and visuospatial abilities compared to SBP and DBP. DISCUSSION: These findings support the notion that in older individuals with MCI excessively low BP values, particularly MAP, might represent a risk and suggest that cerebral hypoperfusion may play a key role. CONCLUSIONS: Routine assessment of MAP could aid clinicians in adjusting antihypertensive treatment and closely monitoring cognitive function in MCI patients.


Subject(s)
Arterial Pressure , Cognitive Dysfunction , Humans , Aged , Cross-Sectional Studies , Cognitive Dysfunction/diagnosis , Blood Pressure/physiology , Cognition
9.
Geroscience ; 46(2): 2531-2544, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38008859

ABSTRACT

MultiMorbidity (MM), defined as the co-occurrence of two or more chronic conditions, is associated with poorer health outcomes, such as recurrent hospital readmission and mortality. As a group of conditions, cardiovascular disease (CVD) exemplifies several challenges of MM, and the identification of prognostic minimally invasive biomarkers to stratify mortality risk in patients affected by cardiovascular MM is a huge challenge. Circulating miRNAs associated to inflammaging and endothelial dysfunction, such as miR-17, miR-21-5p, and miR-126-3p, are expected to have prognostic relevance. We analyzed a composite profile of circulating biomarkers, including miR-17, miR-21-5p, and miR-126-3p, and routine laboratory biomarkers in a sample of 246 hospitalized geriatric patients selected for cardiovascular MM from the Report-AGE INRCA database and BioGER INRCA biobank, to evaluate the association with all-cause mortality during 31 days and 12 and 24 months follow-up. Circulating levels of miR-17, miR-126-3p, and some blood parameters, including neutrophil to lymphocyte ratio (NLR) and eGFR, were significantly associated with mortality in these patients. Overall, our results suggest that in a cohort of geriatric hospitalized patients affected by cardiovascular MM, lower circulating miR-17 and miR-126-3p levels could contribute to identify patients at higher risk of short- and medium-term mortality.


Subject(s)
Cardiovascular System , Circulating MicroRNA , MicroRNAs , Humans , Aged , Multimorbidity , Biomarkers
10.
Immun Ageing ; 20(1): 76, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38111002

ABSTRACT

BACKGROUND: Coronavirus disease COVID-19 is a heterogeneous condition caused by SARS-CoV-2 infection. Generally, it is characterized by interstitial pneumonia that can lead to impaired gas-exchange, acute respiratory failure, and death, although a complex disorder of multi-organ dysfunction has also been described. The pathogenesis is complex, and a variable combination of factors has been described in critically ill patients. COVID-19 is a particular risk for older persons, particularly those with frailty and comorbidities. Blood bacterial DNA has been reported in both physiological and pathological conditions and has been associated with some haematological and laboratory parameters but, to date, no study has characterized it in hospitalized old COVID-19 patients The present study aimed to establish an association between blood bacterial DNA (BB-DNA) and clinical severity in old COVID-19 patients. RESULTS: BB-DNA levels were determined, by quantitative real-time PCRs targeting the 16S rRNA gene, in 149 hospitalized older patients (age range 65-99 years) with COVID-19. Clinical data, including symptoms and signs of infection, frailty status, and comorbidities, were assessed. BB-DNA was increased in deceased patients compared to discharged ones, and Cox regression analysis confirmed an association between BB-DNA and in-hospital mortality. Furthermore, BB-DNA was positively associated with the neutrophil count and negatively associated with plasma IFN-alpha. Additionally, BB-DNA was associated with diabetes. CONCLUSIONS: The association of BB-DNA with mortality, immune-inflammatory parameters and diabetes in hospitalized COVID-19 patients suggests its potential role as a biomarker of unfavourable outcomes of the disease, thus it could be proposed as a novel prognostic marker in the assessment of acute COVID-19 disease.

11.
Geroscience ; 45(6): 3267-3305, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37792158

ABSTRACT

Senescent cells may have a prominent role in driving inflammation and frailty. The impact of cellular senescence on frailty varies depending on the assessment tool used, as it is influenced by the criteria or items predominantly affected by senescent cells and the varying weights assigned to these items across different health domains. To address this challenge, we undertook a thorough review of all available studies involving gain- or loss-of-function experiments as well as interventions targeting senescent cells, focusing our attention on those studies that examined outcomes based on the individual frailty phenotype criteria or specific items used to calculate two humans (35 and 70 items) and one mouse (31 items) frailty indexes. Based on the calculation of a simple "evidence score," we found that the burden of senescent cells related to musculoskeletal and cerebral health has the strongest causal link to frailty. We deem that insight into these mechanisms may not only contribute to clarifying the role of cellular senescence in frailty but could additionally provide multiple therapeutic opportunities to help the future development of a desirable personalized therapy in these extremely heterogeneous patients.


Subject(s)
Frailty , Humans , Mice , Animals , Cellular Senescence/genetics , Phenotype , Inflammation
12.
Cells ; 12(18)2023 09 15.
Article in English | MEDLINE | ID: mdl-37759509

ABSTRACT

The spreading of senescent cells' burden holds profound implications for frailty, prompting the exploration of novel therapeutic targets. In this perspective review, we delve into the intricate mechanisms underlying senescent cell spreading, its implications for frailty, and its therapeutic development. We have focused our attention on the emerging age-related biological factors, such as microbiome and virome alterations, elucidating their significant contribution to the loss of control over the accumulation rate of senescent cells, particularly affecting key frailty domains, the musculoskeletal system and cerebral functions. We believe that gaining an understanding of these mechanisms could not only aid in elucidating the involvement of cellular senescence in frailty but also offer diverse therapeutic possibilities, potentially advancing the future development of tailored interventions for these highly diverse patients.


Subject(s)
Frailty , Microbiota , Humans , Age Factors , Cellular Senescence
13.
Nutrients ; 15(9)2023 May 04.
Article in English | MEDLINE | ID: mdl-37432362

ABSTRACT

An inadequate selenium (Se) status can accelerate the aging process, increasing the vulnerability to age-related diseases. The study aimed to investigate plasma Se and Se species in a large population, including 2200 older adults from the general population (RASIG), 514 nonagenarian offspring (GO), and 293 GO Spouses (SGO). Plasma Se levels in women exhibit an inverted U-shaped pattern, increasing with age until the post-menopausal period and then declining. Conversely, men exhibit a linear decline in plasma Se levels with age. Subjects from Finland had the highest plasma Se values, while those from Poland had the lowest ones. Plasma Se was influenced by fish and vitamin consumption, but there were no significant differences between RASIG, GO, and SGO. Plasma Se was positively associated with albumin, HDL, total cholesterol, fibrinogen, and triglycerides and negatively associated with homocysteine. Fractionation analysis showed that Se distribution among plasma selenoproteins is affected by age, glucometabolic and inflammatory factors, and being GO or SGO. These findings show that sex-specific, nutritional, and inflammatory factors play a crucial role in the regulation of Se plasma levels throughout the aging process and that the shared environment of GO and SGO plays a role in their distinctive Se fractionation.


Subject(s)
Selenium , Female , Humans , Animals , Male , Nonagenarians , Vitamins , Feeding Behavior
14.
Pflugers Arch ; 475(6): 691-709, 2023 06.
Article in English | MEDLINE | ID: mdl-37156970

ABSTRACT

Extracellular vesicles (EVs) enriched with bioactive molecules have gained considerable attention in nanotechnology because they are critical to intercellular communication while maintaining low immunological impact. Among biological matrices, urine has emerged as a noninvasive source of extracellular-contained liquid biopsy, currently of interest as a readout for physiological adaptations. Therefore, we aimed to evaluate chronic adaptations of endurance sport practice in terms of urinary EV parameters and evaluated by food consumption assessment. Two balanced groups of 13 inactive controls vs. triathlon athletes were enrolled; their urinary EVs were obtained by differential ultracentrifugation and analyzed by dynamic light scattering and transmission electron and atomic force microscopy. The cargo was analyzed by means of purine and miRNA content through HPLC-UV and qRT-PCR. Specific urinary EV signatures differentiated inactive versus endurance-trained in terms of peculiar shape. Particularly, a spheroid shape, smaller size, and lower roughness characterize EVs from triathletes. Metabolic and regulatory miRNAs often associated with skeletal muscle (i.e., miR378a-5p, miR27a-3p, miR133a, and miR206) also accounted for a differential signature. These miRNAs and guanosine in urinary EVs can be used as a readout for metabolic status along with the shape and roughness of EVs, novel informative parameters that are rarely considered. The network models allow scholars to entangle nutritional and exercise factors related to EVs' miRNA and purine content to depict metabolic signatures. All in all, multiplex biophysical and molecular analyses of urinary EVs may serve as promising prospects for research in exercise physiology.


Subject(s)
Body Fluids , Extracellular Vesicles , MicroRNAs , Urinary Tract , Humans , MicroRNAs/metabolism , Urinary Tract/metabolism , Extracellular Vesicles/metabolism , Body Fluids/metabolism , Purines/metabolism
15.
Nutrients ; 15(8)2023 Apr 13.
Article in English | MEDLINE | ID: mdl-37111104

ABSTRACT

(1) Background: Zinc is generally used as a nutritional supplement for individuals at nutritional risk, such as older adults. This preliminary study investigated the fractional Zn absorption (FZA) after the supplementation on eight healthy volunteers with three different Zn complexes acquired with milk. (2) Methods: The design was a double-blind, three-period crossover trial. The volunteers were randomly divided into three groups. Each individual consumed 200 mL of bovine milk and rotated through a simultaneous administration of a single oral dose of 70ZnSO4, 70Zn-Gluconate (70Zn-Glu), and 70Zn-Aspartate (70Zn-Asp), equivalent to 2.0 mg 70Zn, followed by 2 weeks of wash-out. An estimation of the FZA for comparative purposes was computed by the isotopic ratio between 66Zn and 70Zn in urine collected before and 48 h after administration. (3) Results: The estimated FZA was found to be significantly higher for 70Zn-Asp when compared to the other forms, while the FZA of 70Zn-Glu was found to be significantly higher than 70ZnSO4. (4) Conclusions: The results of this study suggest that complexing Zn with aspartate in milk could be a useful tool to improve FZA in individuals at risk of Zn deficiency. These results provide a rationale for conducting further studies on Zn-Asp preparations.


Subject(s)
Aspartic Acid , Zinc Sulfate , Humans , Aged , Healthy Volunteers , Intestinal Absorption , Zinc , Gluconates
16.
Int J Mol Sci ; 24(7)2023 Mar 30.
Article in English | MEDLINE | ID: mdl-37047437

ABSTRACT

The homozygous genotype of the Longevity-Associated Variant (LAV) in Bactericidal/Permeability-Increasing Fold-Containing Family B member 4 (BPIFB4) is enriched in long-living individuals of three independent populations and its genetic transfer in C57BL/6J mice showed a delay in frailty progression and improvement of several biomarkers of aging and multiple aspects of health. The C57BL/6J strain is a suitable model for studying therapies aimed at extending healthy aging and longevity due to its relatively short lifespan and the availability of aging biomarkers. Epigenetic clocks based on DNA methylation profiles are reliable molecular biomarkers of aging, while frailty measurement tools are used to evaluate overall health during aging. In this study, we show that the systemic gene transfer of LAV-BPIFB4 in aged C57BL/6J mice was associated with a significant reduction in the epigenetic clock-based biological age, as measured by a three CpG clock method. Furthermore, LAV-BPIFB4 gene transfer resulted in an improvement of the Vitality Score with a reduction in the Frailty Index. These findings further support the use of LAV-BPIFB4 gene therapy to induce beneficial effects on epigenetic mechanisms associated with aging and frailty in aged mice, with potential implications for future therapies to prevent frailty in humans.


Subject(s)
Frailty , Longevity , Humans , Mice , Animals , Aged , Longevity/genetics , Frailty/genetics , Mice, Inbred C57BL , Epigenesis, Genetic , Biomarkers , Genetic Therapy , DNA Methylation , Intercellular Signaling Peptides and Proteins/genetics
17.
Int J Mol Sci ; 24(7)2023 Apr 06.
Article in English | MEDLINE | ID: mdl-37047803

ABSTRACT

Herpesviridae reactivation such as cytomegalovirus (CMV) has been described in severe COVID-19 (COronaVIrusDisease-2019). This study aimed to understand if CMV reactivation in older COVID-19 patients is associated with increased inflammation and in-hospital mortality. In an observational single-center cohort study, 156 geriatric COVID-19 patients were screened for CMV reactivation by RT-PCR. Participants underwent a comprehensive clinical investigation that included medical history, functional evaluation, laboratory tests and cytokine assays (TNF-α, IFN-α, IL-6, IL-10) at hospital admission. In 19 (12.2%) of 156 COVID-19 patients, CMV reactivation was detected. Multivariate Cox regression models showed that in-hospital mortality significantly increased among CMV positive patients younger than 87 years (HR: 9.94, 95% CI: 1.66-59.50). Other factors associated with in-hospital mortality were C-reactive protein (HR: 1.17, 95% CI: 1.05-1.30), neutrophil count (HR: 1.20, 95% CI: 1.01-1.42) and clinical frailty scale (HR:1.54, 95% CI: 1.04-2.28). In patients older than 87 years, neutrophil count (HR: 1.13, 95% CI: 1.05-1.21) and age (HR: 1.15, 95% CI: 1.01-1.31) were independently associated with in-hospital mortality. CMV reactivation was also correlated with increased IFN-α and TNF-α serum levels, but not with IL-6 and IL-10 serum changes. In conclusion, CMV reactivation was an independent risk factor for in-hospital mortality in COVID-19 patients younger than 87 years old, but not in nonagenarians.


Subject(s)
COVID-19 , Cytomegalovirus Infections , Aged, 80 and over , Humans , Aged , Cytomegalovirus/physiology , Cytomegalovirus Infections/complications , Interleukin-10 , Cohort Studies , Interleukin-6 , Tumor Necrosis Factor-alpha , COVID-19/complications , Virus Activation , Retrospective Studies
18.
Viruses ; 15(1)2023 01 09.
Article in English | MEDLINE | ID: mdl-36680229

ABSTRACT

(1) Background: During the COVID-19 pandemic, rapid and reliable diagnostic tools are needed for detecting SARS-CoV-2 infection in urgent cases at admission to the hospital. We aimed to assess the performances of the rapid molecular VitaPCR™ test (Menarini Diagnostics) in a sample of older adults admitted to the Emergency Department of two Italian hospitals (2) Methods: The comparison between the rapid VitaPCR™ and the RT-PCR was performed in 1695 samples. Two naso-pharyngeal swab samplings from each individual were obtained and processed using the VitaPCR™ and the RT-PCR for the detection of SARS-CoV-2 (3) Results: VitaPCR™ exhibited good precision (<3% CV) and an almost perfect overall agreement (Cohen's K = 0.90) with the RT-PCR. The limit of detection of the VitaPCR™ was 4.1 copies/µL. Compared to the RT-PCR, the sensitivity, the specificity, and the positive and negative predictive values of VitaPCR™ were 83.4%, 99.9%, 99.2% and 98.3%, respectively (4) Conclusions: The VitaPCR™ showed similar sensitivity and specificity to other molecular-based rapid tests. This study suggests that the VitaPCR™ can allow the rapid management of patients within the Emergency Department. Nevertheless, it is advisable to obtain a negative result by a RT-PCR assay before admitting a patient to a regular ward.


Subject(s)
COVID-19 , Humans , Aged , COVID-19/diagnosis , SARS-CoV-2/genetics , Pandemics , COVID-19 Testing , Sensitivity and Specificity , Emergency Service, Hospital
19.
Geroscience ; 45(4): 2195-2211, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36702990

ABSTRACT

Frailty is an age-related condition characterized by a multisystem functional decline, increased vulnerability to stressors, and adverse health outcomes. Quantifying the degree of frailty in humans and animals is a health measure useful for translational geroscience research. Two frailty measurements, namely the frailty phenotype (FP) and the clinical frailty index (CFI), have been validated in mice and are frequently applied in preclinical research. However, these two tools are based on different concepts and do not necessarily identify the same mice as frail. In particular, the FP is based on a dichotomous classification that suffers from high sample size requirements and misclassification problems. Based on the monthly longitudinal non-invasive assessment of frailty in a large cohort of mice, here we develop an alternative scoring method, which we called physical function score (PFS), proposed as a continuous variable that resumes into a unique function, the five criteria included in the FP. This score would not only reduce misclassification of frailty but it also makes the two tools, PFS and CFI, integrable to provide an overall measurement of health, named vitality score (VS) in aging mice. VS displays a higher association with mortality than PFS or CFI and correlates with biomarkers related to the accumulation of senescent cells and the epigenetic clock. This longitudinal non-invasive assessment strategy and the VS may help to overcome the different sensitivity in frailty identification, reduce the sample size in longitudinal experiments, and establish the effectiveness of therapeutic/preventive interventions for frailty or other age-related diseases in geriatric animals.


Subject(s)
Frailty , Humans , Animals , Mice , Aged , Frail Elderly , Geriatric Assessment/methods , Mice, Inbred C57BL , Aging
20.
J Gerontol A Biol Sci Med Sci ; 78(1): 42-50, 2023 01 26.
Article in English | MEDLINE | ID: mdl-35914804

ABSTRACT

Aging and age-related diseases have been linked to microbial dysbiosis with changes in blood bacterial DNA concentration. This condition may promote chronic low-grade inflammation, which can be further aggravated by antioxidant nutrient deficiency. Low plasma carotenoids are associated with an increased risk of inflammation and cellular damage and predict mortality. However, no evidence is yet available on the relationship between antioxidants and the blood bacterial DNA (BB-DNA). Therefore, this study aimed to compare BB-DNA from (a) GO (nonagenarian offspring), (b) age-matched controls (Randomly recruited Age-Stratified Individuals from the General population [RASIG]), and (c) spouses of GO (SGO) recruited in the MARK-AGE project, as well as to investigate the association between BB-DNA, behavior habits, Charlson Comorbidity Index (CCI), leucocyte subsets, and the circulating levels of some antioxidants and oxidative stress markers. BB-DNA was higher in RASIG than GO and SGO, whereas GO and SGO participants showed similar values. BB-DNA increased in smokers and males with CCI ≥ 2 compared with those with CCI ≤ 1 within RASIG. Moreover, BB-DNA was positively associated with lymphocyte, neutrophil, and monocyte counts, but not with self-reported dietary habits. Higher quartiles of BB-DNA were associated with low lutein and zeaxanthin and elevated malondialdehyde plasma concentrations in RASIG. BB-DNA was also positively correlated with nitric oxide levels. Herein, we provide evidence of a reduced BB-DNA in individuals from long-living families and their spouses, suggesting a decreased microbial dysbiosis and bacterial systemic translocation. BB-DNA was also associated with smoking, CCI, leukocyte subsets, and some redox biomarkers in older participants.


Subject(s)
Dysbiosis , Nonagenarians , Aged , Aged, 80 and over , Humans , Male , Antioxidants/metabolism , Biomarkers , DNA, Bacterial , Inflammation , Oxidation-Reduction , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...