Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Hazard Mater ; 422: 126840, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34419848

ABSTRACT

Micropollutants can be removed in Biological Activated Carbon (BAC) filters through biodegradation, besides adsorption, when the conditions are favorable. In the present study, we build upon previous work on melamine biodegradation and activated carbon regeneration in batch experiments and assess the efficiency of this process in continuous flow lab-scale BAC filters. Melamine is frequently detected at low concentrations in surface water and is used here as a model micropollutant. BAC filters were inoculated with melamine degrading biomass and the contribution of biodegradation to melamine removal was assessed. Furthermore, we tested the effect of an additional carbon source (methanol) and the effect of contact time on melamine removal efficiency. We demonstrate that inoculation of activated carbon filters with melamine degrading biomass increases melamine removal efficiency by at least 25%. When an additional carbon source (methanol) is supplied, melamine removal is almost complete (up to 99%). Finally, through a nitrogen mass balance, we demonstrate that around 60% of the previously adsorbed melamine desorbs from the BAC surface when biodegradation rates in the liquid phase increase. Melamine desorption resulted in a partial recovery of the adsorption capacity.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Biodegradation, Environmental , Charcoal , Triazines , Water Pollutants, Chemical/analysis
2.
J Hazard Mater ; 414: 125503, 2021 07 15.
Article in English | MEDLINE | ID: mdl-33676259

ABSTRACT

The industrial chemical melamine is often detected in surface water used for drinking water production, due to its wide application and insufficient removal in conventional wastewater treatment plants. Melamine can be removed from water by adsorption onto granular activated carbon (GAC), nevertheless, GAC needs periodic reactivation in costly and energy intense processes. As an alternative method, GAC can also be regenerated using biomass capable of degrading melamine in a process called bioregeneration. We assessed melamine biodegradation in batch experiments in fully oxic and anoxic, as well as in alternating oxic and anoxic conditions. Additionally, we studied the effect of an additional carbon source on the biodegradation. The most favourable conditions for melamine biodegradation were applied to bioregenerate GAC loaded with melamine. We demonstrate that melamine can be biodegraded in either oxic or anoxic conditions and that melamine degrading biomass can restore at least 28% of the original GAC adsorption capacity. Furthermore, our results indicate that bioregeneration occurs mainly in the largest pore fraction of GAC, impacting adsorption kinetics. Overall, we show that bioregeneration has a large potential for restoring GAC adsorption capacity in industrial wastewater.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Charcoal , Triazines
3.
J Hazard Mater ; 388: 122028, 2020 04 15.
Article in English | MEDLINE | ID: mdl-31955023

ABSTRACT

The presence of micropollutants in surface water is a potential threat for the production of high quality and safe drinking water. Adsorption of micropollutants onto granular activated carbon (GAC) in fixed-bed filters is often applied as a polishing step in the production of drinking water. Activated carbon can act as a carrier material for biofilm, hence biodegradation can be an additional removal mechanism for micropollutants in GAC filters. To assess the potential of biofilm to biodegrade micropollutants, it is necessary to distinguish adsorption from biodegradation as a removal mechanism. We performed experiments at 5 °C and 20 °C with biologically active and autoclaved GAC to assess the biodegradation of micropollutants by the biofilm grown on the GAC surface. Ten micropollutants were selected as model compounds. Three of them, iopromide, iopamidol and metformin, were biodegraded by the GAC biofilm. Additionally, we observed that temperature can increase or decrease adsorption, depending on the micropollutant studied. Finally, we compared the adsorption capacity of GAC used for more than 100,000 bed volumes and fresh GAC. We demonstrated that used GAC shows a higher adsorption capacity for guanylurea, metformin and hexamethylenetetramine and only a limited reduction in adsorption capacity for diclofenac and benzotriazole compared to fresh GAC.


Subject(s)
Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/metabolism , Water Purification/methods , Adsorption , Biodegradation, Environmental , Biofilms , Charcoal/chemistry , Charcoal/metabolism , Drinking Water
4.
Water Res ; 162: 518-527, 2019 Oct 01.
Article in English | MEDLINE | ID: mdl-31277934

ABSTRACT

Hydrophilic organic micropollutants are commonly detected in source water used for drinking water production. Effective technologies to remove these micropollutants from water include adsorption onto granular activated carbon in fixed-bed filters. The rate-determining step in adsorption using activated carbon is usually the adsorbate diffusion inside the porous adsorbent. The presence of mesopores can facilitate diffusion, resulting in higher adsorption rates. We used two different types of granular activated carbon, with and without mesopores, to study the adsorption rate of hydrophilic micropollutants. Furthermore, equilibrium studies were performed to determine the affinity of the selected micropollutants for the activated carbons. A pore diffusion model was applied to the kinetic data to obtain pore diffusion coefficients. We observed that the adsorption rate is influenced by the molecular size of the micropollutant as well as the granular activated carbon pore size.


Subject(s)
Water Pollutants, Chemical , Water Purification , Adsorption , Charcoal , Diffusion , Kinetics
5.
Water Sci Technol ; 77(11-12): 2589-2597, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29944124

ABSTRACT

Chemical energy can be recovered from municipal wastewater as biogas through anaerobic treatment. Effluent from direct anaerobic wastewater treatment at low temperatures, however, still contains ammonium and considerable amounts of dissolved methane. After nitritation, methane can be used as electron donor for denitrification by the anaerobic bacterium 'Candidatus Methylomirabilis oxyfera'. It was shown that in the presence of 0.7% O2, denitrifying methanotrophic activity slightly increased and returned to its original level after oxygen had been removed. At 1.1% O2, methane consumption rate increased 118%, nitrite consumption rate increased 58%. After removal of oxygen, methane consumption rate fully recovered, and nitrite consumption rate returned to 88%. Therefore, traces of oxygen that bacteria are likely to be exposed to in wastewater treatment are not expected to negatively affect the denitrifying methanotrophic process. 2.0% O2 inhibited denitrifying activity. Nitrite consumption rate decreased 60% and did not recover after removal of oxygen. No clear effect on methane consumption was observed. Further studies should evaluate if intermittent addition of oxygen results in increased growth rates of the slow-growing 'Candidatus Methylomirabilis oxyfera'.


Subject(s)
Bacteria, Anaerobic/metabolism , Oxygen/metabolism , Waste Disposal, Fluid/methods , Bacteria, Anaerobic/growth & development , Denitrification , Methane/metabolism , Nitrites/metabolism , Waste Disposal, Fluid/instrumentation , Wastewater/chemistry
6.
Water Sci Technol ; 70(10): 1683-9, 2014.
Article in English | MEDLINE | ID: mdl-25429458

ABSTRACT

The activity of denitrifying methanotrophic bacteria at 11-30 °C was assessed in short-term experiments. The aim was to determine the feasibility of applying denitrifying methanotrophic bacteria in low-temperature anaerobic wastewater treatment. This study showed that biomass enriched at 21 °C had an optimum temperature of 20-25 °C and that activity dropped as temperature was increased to 30 °C. Biomass enriched at 30 °C had an optimum temperature of 25-30 °C. These results indicated that biomass from low-temperature inocula adjusted to the enrichment temperature and that low-temperature enrichment is suitable for applications in low-temperature wastewater treatment. Biomass growth at ≤20 °C still needs to be studied.


Subject(s)
Bacteria/metabolism , Cold Temperature , Denitrification , Biomass , Waste Disposal, Fluid
SELECTION OF CITATIONS
SEARCH DETAIL
...