Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nature ; 574(7779): 497-500, 2019 10.
Article in English | MEDLINE | ID: mdl-31645733

ABSTRACT

Half of all of the elements in the Universe that are heavier than iron were created by rapid neutron capture. The theory underlying this astrophysical r-process was worked out six decades ago, and requires an enormous neutron flux to make the bulk of the elements1. Where this happens is still debated2. A key piece of evidence would be the discovery of freshly synthesized r-process elements in an astrophysical site. Existing models3-5 and circumstantial evidence6 point to neutron-star mergers as a probable r-process site; the optical/infrared transient known as a 'kilonova' that emerges in the days after a merger is a likely place to detect the spectral signatures of newly created neutron-capture elements7-9. The kilonova AT2017gfo-which was found following the discovery of the neutron-star merger GW170817 by gravitational-wave detectors10-was the first kilonova for which detailed spectra were recorded. When these spectra were first reported11,12, it was argued that they were broadly consistent with an outflow of radioactive heavy elements; however, there was no robust identification of any one element. Here we report the identification of the neutron-capture element strontium in a reanalysis of these spectra. The detection of a neutron-capture element associated with the collision of two extreme-density stars establishes the origin of r-process elements in neutron-star mergers, and shows that neutron stars are made of neutron-rich matter13.

2.
Nature ; 523(7559): 189-92, 2015 Jul 09.
Article in English | MEDLINE | ID: mdl-26156372

ABSTRACT

A new class of ultra-long-duration (more than 10,000 seconds) γ-ray bursts has recently been suggested. They may originate in the explosion of stars with much larger radii than those producing normal long-duration γ-ray bursts or in the tidal disruption of a star. No clear supernova has yet been associated with an ultra-long-duration γ-ray burst. Here we report that a supernova (SN 2011kl) was associated with the ultra-long-duration γ-ray burst GRB 111209A, at a redshift z of 0.677. This supernova is more than three times more luminous than type Ic supernovae associated with long-duration γ-ray bursts, and its spectrum is distinctly different. The slope of the continuum resembles those of super-luminous supernovae, but extends further down into the rest-frame ultraviolet implying a low metal content. The light curve evolves much more rapidly than those of super-luminous supernovae. This combination of high luminosity and low metal-line opacity cannot be reconciled with typical type Ic supernovae, but can be reproduced by a model where extra energy is injected by a strongly magnetized neutron star (a magnetar), which has also been proposed as the explanation for super-luminous supernovae.

3.
Nature ; 480(7377): 344-7, 2011 Dec 14.
Article in English | MEDLINE | ID: mdl-22170680

ABSTRACT

Type Ia supernovae have been used empirically as 'standard candles' to demonstrate the acceleration of the expansion of the Universe even though fundamental details, such as the nature of their progenitor systems and how the stars explode, remain a mystery. There is consensus that a white dwarf star explodes after accreting matter in a binary system, but the secondary body could be anything from a main-sequence star to a red giant, or even another white dwarf. This uncertainty stems from the fact that no recent type Ia supernova has been discovered close enough to Earth to detect the stars before explosion. Here we report early observations of supernova SN 2011fe in the galaxy M101 at a distance from Earth of 6.4 megaparsecs. We find that the exploding star was probably a carbon-oxygen white dwarf, and from the lack of an early shock we conclude that the companion was probably a main-sequence star. Early spectroscopy shows high-velocity oxygen that slows rapidly, on a timescale of hours, and extensive mixing of newly synthesized intermediate-mass elements in the outermost layers of the supernova. A companion paper uses pre-explosion images to rule out luminous red giants and most helium stars as companions to the progenitor.

4.
Science ; 321(5893): 1185-8, 2008 Aug 29.
Article in English | MEDLINE | ID: mdl-18653846

ABSTRACT

The only supernovae (SNe) to show gamma-ray bursts (GRBs) or early x-ray emission thus far are overenergetic, broad-lined type Ic SNe (hypernovae, HNe). Recently, SN 2008D has shown several unusual features: (i) weak x-ray flash (XRF), (ii) an early, narrow optical peak, (iii) disappearance of the broad lines typical of SN Ic HNe, and (iv) development of helium lines as in SNe Ib. Detailed analysis shows that SN 2008D was not a normal supernova: Its explosion energy (E approximately 6x10(51) erg) and ejected mass [ approximately 7 times the mass of the Sun (M(middle dot in circle))] are intermediate between normal SNe Ibc and HNe. We conclude that SN 2008D was originally a approximately 30 M(middle dot in circle) star. When it collapsed, a black hole formed and a weak, mildly relativistic jet was produced, which caused the XRF. SN 2008D is probably among the weakest explosions that produce relativistic jets. Inner engine activity appears to be present whenever massive stars collapse to black holes.

5.
Science ; 319(5867): 1220-3, 2008 Feb 29.
Article in English | MEDLINE | ID: mdl-18239091

ABSTRACT

Core-collapse supernovae (CC-SNe) are the explosions that announce the death of massive stars. Some CC-SNe are linked to long-duration gamma-ray bursts (GRBs) and are highly aspherical. One important question is to what extent asphericity is common to all CC-SNe. Here we present late-time spectra for a number of CC-SNe from stripped-envelope stars and use them to explore any asphericity generated in the inner part of the exploding star, near the site of collapse. A range of oxygen emission-line profiles is observed, including a high incidence of double-peaked profiles, a distinct signature of an aspherical explosion. Our results suggest that all CC-SNe from stripped-envelope stars are aspherical explosions and that SNe accompanied by GRBs exhibit the highest degree of asphericity.

6.
Nature ; 442(7106): 1018-20, 2006 Aug 31.
Article in English | MEDLINE | ID: mdl-16943833

ABSTRACT

Supernovae connected with long-duration gamma-ray bursts (GRBs) are hyper-energetic explosions resulting from the collapse of very massive stars ( approximately 40 M\circ, where M\circ is the mass of the Sun) stripped of their outer hydrogen and helium envelopes. A very massive progenitor, collapsing to a black hole, was thought to be a requirement for the launch of a GRB. Here we report the results of modelling the spectra and light curve of SN 2006aj (ref. 9), which demonstrate that the supernova had a much smaller explosion energy and ejected much less mass than the other GRB-supernovae, suggesting that it was produced by a star whose initial mass was only approximately 20 M\circ. A star of this mass is expected to form a neutron star rather than a black hole when its core collapses. The smaller explosion energy of SN 2006aj is matched by the weakness and softness of GRB 060218 (an X-ray flash), and the weakness of the radio flux of the supernova. Our results indicate that the supernova-GRB connection extends to a much broader range of stellar masses than previously thought, possibly involving different physical mechanisms: a 'collapsar' (ref. 8) for the more massive stars collapsing to a black hole, and magnetic activity of the nascent neutron star for the less massive stars.

7.
Science ; 308(5726): 1284-7, 2005 May 27.
Article in English | MEDLINE | ID: mdl-15919986

ABSTRACT

Type Ic supernovae, the explosions after the core collapse of massive stars that have previously lost their hydrogen and helium envelopes, are particularly interesting because of their link with long-duration gamma ray bursts. Although indications exist that these explosions are aspherical, direct evidence has been missing. Late-time observations of supernova SN 2003jd, a luminous type Ic supernova, provide such evidence. Recent Subaru and Keck spectra reveal double-peaked profiles in the nebular lines of neutral oxygen and magnesium. These profiles are different from those of known type Ic supernovae, with or without a gamma ray burst, and they can be understood if SN 2003jd was an aspherical axisymmetric explosion viewed from near the equatorial plane. If SN 2003jd was associated with a gamma ray burst, we missed the burst because it was pointing away from us.

8.
Nature ; 423(6942): 847-50, 2003 Jun 19.
Article in English | MEDLINE | ID: mdl-12815425

ABSTRACT

Over the past five years evidence has mounted that long-duration (>2 s) gamma-ray bursts (GRBs)-the most luminous of all astronomical explosions-signal the collapse of massive stars in our Universe. This evidence was originally based on the probable association of one unusual GRB with a supernova, but now includes the association of GRBs with regions of massive star formation in distant galaxies, the appearance of supernova-like 'bumps' in the optical afterglow light curves of several bursts and lines of freshly synthesized elements in the spectra of a few X-ray afterglows. These observations support, but do not yet conclusively demonstrate, the idea that long-duration GRBs are associated with the deaths of massive stars, presumably arising from core collapse. Here we report evidence that a very energetic supernova (a hypernova) was temporally and spatially coincident with a GRB at redshift z = 0.1685. The timing of the supernova indicates that it exploded within a few days of the GRB, strongly suggesting that core-collapse events can give rise to GRBs, thereby favouring the 'collapsar' model.

SELECTION OF CITATIONS
SEARCH DETAIL
...