Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(19)2024 May 21.
Article in English | MEDLINE | ID: mdl-38747428

ABSTRACT

We present a combined experimental and theoretical investigation of the radiationless decay spectrum of an O 1s double core hole in liquid water. Our experiments were carried out using liquid-jet electron spectroscopy from cylindrical microjets of normal and deuterated water. The signal of the double-core-hole spectral fingerprints (hypersatellites) of liquid water is clearly identified, with an intensity ratio to Auger decay of singly charged O 1s of 0.0014(5). We observe a significant isotope effect between liquid H2O and D2O. For theoretical modeling, the Auger electron spectrum of the central water molecule in a water pentamer was calculated using an electronic-structure toolkit combined with molecular-dynamics simulations to capture the influence of molecular rearrangement within the ultrashort lifetime of the double core hole. We obtained the static and dynamic Auger spectra for H2O, (H2O)5, D2O, and (D2O)5, instantaneous Auger spectra at selected times after core-level ionization, and the symmetrized oxygen-hydrogen distance as a function of time after double core ionization for all four prototypical systems. We consider this observation of liquid-water double core holes as a new tool to study ultrafast nuclear dynamics.

2.
Phys Chem Chem Phys ; 26(2): 1234-1244, 2024 Jan 03.
Article in English | MEDLINE | ID: mdl-38099819

ABSTRACT

We explore ultrafast charge transfer (CT) resonantly induced by hard X-ray radiation in organic thiophene-based polymers at the sulfur K-edge. A combination of core-hole clock spectroscopy with real-time propagation time-dependent density functional theory simulations gives an insight into the electron dynamics underlying the CT process. Our method provides control over CT by a selective excitation of a specific resonance in the sulfur atom with monochromatic X-ray radiation. Our combined experimental and theoretical investigation establishes that the dominant mechanism of CT in polymer powders and films consists of electron delocalisation along the polymer chain occurring on the low-femtosecond time scale.

3.
Phys Chem Chem Phys ; 25(2): 1063-1074, 2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36383083

ABSTRACT

Fragmentation dynamics of core-excited isolated ammonia molecules is studied by two different and complementary experimental methods, high-resolution resonant Auger spectroscopy and electron energy-selected Auger electron-photoion coincidence spectroscopy (AEPICO). The combined use of these two techniques allows obtaining information on different dissociation patterns, in particular fragmentation before relaxation, often called ultrafast dissociation (UFD), and fragmentation after relaxation. The resonant Auger spectra contain the spectral signature of both molecular and fragment final states, and therefore can provide information on all events occurring during the core-hole lifetime, in particular fragmentation before relaxation. Coincidence measurements allow correlating Auger electrons with ionic fragments from the same molecule, and relating the ionic fragments to specific Auger final electronic states, and yield additional information on which final states are dissociative, and which ionic fragments can be produced in timescales either corresponding to the core-hole lifetime or longer. Furthermore, we show that by the combined use of two complementary experimental techniques we are able to identify more electronic states of the NH2+ fragment with respect to the single one already reported in the literature.

4.
Phys Rev Lett ; 131(25): 253201, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-38181353

ABSTRACT

Excited double-core-hole states of isolated water molecules resulting from the sequential absorption of two x-ray photons have been investigated. These states are formed through an alternative pathway, where the initial step of core ionization is accompanied by the shake-up of a valence electron, leading to the same final states as in the core-ionization followed by core-excitation pathway. The capability of the x-ray free-electron laser to deliver very intense, very short, and tunable light pulses is fully exploited to identify the two different pathways.

5.
J Am Chem Soc ; 144(48): 21878-21886, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36444673

ABSTRACT

The photochemically induced ring-opening isomerization reaction of 1,3-cyclohexadiene to 1,3,5-hexatriene is a textbook example of a pericyclic reaction and has been amply investigated with advanced spectroscopic techniques. The main open question has been the identification of the single reactive state which drives the process. The generally accepted description of the isomerization pathway starts with a valence excitation to the lowest lying bright state, followed by a passage through a conical intersection to the lowest lying doubly excited state, and finally a branching between either the return to the ground state of the cyclic molecule or the actual ring-opening reaction leading to the open-chain isomer. Here, in a joint experimental and computational effort, we demonstrate that the evolution of the excitation-deexcitation process is much more complex than that usually described. In particular, we show that an initially high-lying electronic state smoothly decreasing in energy along the reaction path plays a key role in the ring-opening reaction.

6.
Phys Chem Chem Phys ; 24(14): 8477-8487, 2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35404373

ABSTRACT

We propose a novel approach for an indirect probing of conjugation and hyperconjugation in core-excited molecules using resonant Auger spectroscopy. Our work demonstrates that the changes in the electronic structure of thiophene (C4H4S) and thiazole (C3H3NS), occurring in the process of resonant sulfur K-shell excitation and Auger decay, affect the stabilisation energy resulting from π-conjugation and hyperconjugation. The variations in the stabilisation energy manifest themselves in the resonant S KL2,3L2,3 Auger spectra of thiophene and thiazole. The comparison of the results obtained for the conjugated molecules and for thiolane (C4H8S), the saturated analogue of thiophene, has been performed. The experimental observations are interpreted using high-level quantum-mechanical calculations and the natural bond orbital analysis.

7.
Phys Chem Chem Phys ; 24(10): 5842-5854, 2022 Mar 09.
Article in English | MEDLINE | ID: mdl-35195639

ABSTRACT

We study vibrationally-resolved resonant Auger (RAS) spectra of ammonia recorded in coincidence with the NH2+ fragment, which is produced in the course of dissociation either in the core-excited 1s-14a11 intermediate state or the first spectator 3a-24a11 final state. Correlation of the NH2+ ion flight times with electron kinetic energies allows directly observing the Auger-Doppler dispersion for each vibrational state of the fragment. The median distribution of the kinetic energy release EKER, derived from the coincidence data, shows three distinct branches as a function of Auger electron kinetic energy Ee: Ee + 1.75EKER = const for the molecular band; EKER = const for the fragment band; and Ee + EKER = const for the region preceding the fragment band. The deviation of the molecular band dispersion from Ee + EKER = const is attributed to the redistribution of the available energy to the dissociation energy and excitation of the internal degrees of freedom in the molecular fragment. We found that for each vibrational line the dispersive behavior of EKERvs. Ee is very sensitive to the instrumental uncertainty in the determination of EKER causing the competition between the Raman (EKER + Ee = const) and Auger (Ee = const) dispersions: increase in the broadening of the finite kinetic energy release resolution leads to a change of the dispersion from the Raman to the Auger one.

8.
Phys Chem Chem Phys ; 22(46): 26806-26818, 2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33227117

ABSTRACT

A comprehensive electron spectroscopic study combined with partial electron yield measurements around the Br 1s ionization threshold of HBr at ≅13.482 keV is reported. In detail, the Br 1s-1 X-ray absorption spectrum, the 1s-1 photoelectron spectrum as well as the normal and resonant KLL Auger spectra are presented. Moreover, the L-shell Auger spectra measured with photon energies below and above the Br 1s-1 ionization energy as well as on top of the Br 1s-1σ* resonance are shown. The latter two Auger spectra represent the second step of the decay cascade subsequent to producing a Br 1s-1 core hole. The measurements provide information on the electron and nuclear dynamics of deep core-excited states of HBr on the femtosecond timescale. From the different spectra the lifetime broadening of the Br 1s-1 single core-hole state as well as of the Br(2s-2,2s-12p-1,2p-2)  double core-hole states are extracted and discussed. The slope of the strongly dissociative HBr 2p-2σ* potential energy curve is found to be about -13.60 eV Å-1. The interpretation of the experimental data, and in particular the assignment of the spectral features in the KLL and L-shell Auger spectra, is supported by relativistic calculations for HBr molecule and atomic Br.

9.
Phys Chem Chem Phys ; 21(25): 13600-13610, 2019 Jun 26.
Article in English | MEDLINE | ID: mdl-31187832

ABSTRACT

In molecular photoemission, the analogue of the celebrated Young's double slit experiment is coherent electron emission from two equivalent atomic centers, giving rise to an interference pattern. Here multi-slit interference is investigated in inner-valence photoionization of propane, n-butane, isobutane and methyl peroxide. A more complex pattern is observed due to molecular orbital delocalization in polyatomic molecules, blurring the distinction between interference and diffraction. The potential to extract geometrical information is emphasized, as a more powerful extension of the EXAFS technique. Accurate reproduction of experimental features is obtained by simulations at the static Density Functional Theory level.

10.
Phys Chem Chem Phys ; 21(17): 8827-8836, 2019 Apr 24.
Article in English | MEDLINE | ID: mdl-30972388

ABSTRACT

The Si 1s-1, Si 2s-1, and Si 2p-1 photoelectron spectra of the SiX4 molecules with X = F, Cl, Br, CH3 were measured. From these spectra the Si 1s-1 and Si 2s-1 lifetime broadenings were determined, revealing a significantly larger value for the Si 2s-1 core hole of SiF4 than for the same core hole of the other molecules of the sequence. This finding is in line with the results of the Si 2p-1 core holes of a number of SiX4 molecules, with an exceptionally large broadening for SiF4. For the Si 2s-1 core hole of SiF4 the difference to the other SiX4 molecules can be explained in terms of Interatomic Coulomb Decay (ICD)-like processes. For the Si 2p-1 core hole of SiF4 the estimated values for the sum of the Intraatomic Auger Electron Decay (IAED) and ICD-like processes are too small to explain the observed linewidth. However, the results of the given discussion render for SiF4 significant contributions from Electron Transfer Mediated Decay (ETMD)-like processes at least plausible. On the grounds of our results, some more molecular systems in which similar processes can be observed are identified.

11.
Phys Chem Chem Phys ; 21(10): 5448-5454, 2019 Mar 06.
Article in English | MEDLINE | ID: mdl-30793147

ABSTRACT

Hard X-ray electron spectroscopic study of iodine 1s and 2s photoionization of iodomethane (CH3I) and trifluoroiodomethane (CF3I) molecules is presented. The experiment was carried out at the SPring-8 synchrotron radiation facility in Japan. The results are analyzed with the aid of relativistic molecular and atomic calculations. It is shown that charge redistribution within the molecule is experimentally observable even for very deep levels and is a function of the number of electron vacancies. We also show that the analysis of Auger spectra subsequent to hard X-ray photoionization can be used to provide insight into charge distribution in molecules and highlight the necessity of quantum electrodynamics corrections in the prediction of core shell binding energies in molecules that contain heavy atoms.

12.
Proc Natl Acad Sci U S A ; 116(11): 4877-4882, 2019 03 12.
Article in English | MEDLINE | ID: mdl-30733297

ABSTRACT

Observing and controlling molecular motion and in particular rotation are fundamental topics in physics and chemistry. To initiate ultrafast rotation, one needs a way to transfer a large angular momentum to the molecule. As a showcase, this was performed by hard X-ray C1s ionization of carbon monoxide accompanied by spinning up the molecule via the recoil "kick" of the emitted fast photoelectron. To visualize this molecular motion, we use the dynamical rotational Doppler effect and an X-ray "pump-probe" device offered by nature itself: the recoil-induced ultrafast rotation is probed by subsequent Auger electron emission. The time information in our experiment originates from the natural delay between the C1s photoionization initiating the rotation and the ejection of the Auger electron. From a more general point of view, time-resolved measurements can be performed in two ways: either to vary the "delay" time as in conventional time-resolved pump-probe spectroscopy and use the dynamics given by the system, or to keep constant delay time and manipulate the dynamics. Since in our experiment we cannot change the delay time given by the core-hole lifetime τ, we use the second option and control the rotational speed by changing the kinetic energy of the photoelectron. The recoil-induced rotational dynamics controlled in such a way is observed as a photon energy-dependent asymmetry of the Auger line shape, in full agreement with theory. This asymmetry is explained by a significant change of the molecular orientation during the core-hole lifetime, which is comparable with the rotational period.

13.
J Chem Phys ; 149(20): 204313, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30501230

ABSTRACT

The photodissociation dynamics of CH3I and CH2ClI at 272 nm were investigated by time-resolved Coulomb explosion imaging, with an intense non-resonant 815 nm probe pulse. Fragment ion momenta over a wide m/z range were recorded simultaneously by coupling a velocity map imaging spectrometer with a pixel imaging mass spectrometry camera. For both molecules, delay-dependent pump-probe features were assigned to ultraviolet-induced carbon-iodine bond cleavage followed by Coulomb explosion. Multi-mass imaging also allowed the sequential cleavage of both carbon-halogen bonds in CH2ClI to be investigated. Furthermore, delay-dependent relative fragment momenta of a pair of ions were directly determined using recoil-frame covariance analysis. These results are complementary to conventional velocity map imaging experiments and demonstrate the application of time-resolved Coulomb explosion imaging to photoinduced real-time molecular motion.

14.
Phys Chem Chem Phys ; 20(1): 695, 2017 12 20.
Article in English | MEDLINE | ID: mdl-29210389

ABSTRACT

Correction for 'Probing keto-enol tautomerism using photoelectron spectroscopy' by Nathalie Capron et al., Phys. Chem. Chem. Phys., 2015, 17, 19991-19996.

15.
Phys Rev Lett ; 116(21): 213001, 2016 May 27.
Article in English | MEDLINE | ID: mdl-27284654

ABSTRACT

Creation of deep core holes with very short (τ≤1 fs) lifetimes triggers a chain of relaxation events leading to extensive nuclear dynamics on a few-femtosecond time scale. Here we demonstrate a general multistep ultrafast dissociation on an example of HCl following Cl 1s→σ^{*} excitation. Intermediate states with one or multiple holes in the shallower core electron shells are generated in the course of the decay cascades. The repulsive character and large gradients of the potential energy surfaces of these intermediates enable ultrafast fragmentation after the absorption of a hard x-ray photon.

16.
Phys Chem Chem Phys ; 18(22): 15133-42, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27199185

ABSTRACT

We have measured resonant-Auger decay following Cl 1s(-1) excitations in HCl and CH3Cl molecules, and extracted the pseudo-cross sections of different Cl 2p(-2) final states. These cross sections show clear evidence of shake processes as well as contributions of electronic state-lifetime interference (ELI). To describe the spectra we developed a fit approach that takes into account ELI contributions and ultrafast nuclear dynamics in dissociative core-excited states. Using this approach we utilized the ELI contributions to obtain the intensity ratios of the overlapping states Cl 1s(-1)4pπ/1s(-1)4pσ in HCl and Cl 1s(-1)4pe/1s(-1)4pa1 in CH3Cl. The experimental value for HCl is compared with theoretical results showing satisfactory agreement.

17.
Phys Chem Chem Phys ; 17(30): 19991-6, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26172609

ABSTRACT

We theoretically investigate the mechanism of tautomerism in the gas-phase acetylacetone molecule. The minimum energy path between the enolone and diketo forms has been computed using the Nudged-Elastic Band (NEB) method within the density-functional theory (DFT) using the projector augmented-wave method and generalized gradient approximation in Perdew-Wang (PW91) parametrization. The lowest transition state as well as several intermediate geometries between the two stable tautomers have been identified. The outer-valence ionization spectra for all determined geometries have been computed using the third-order non-Dyson algebraic diagrammatic construction technique. Furthermore, the oxygen core-shell ionization spectra for these geometries have been obtained using DFT and the Becke three-parameter Lee-Yang-Parr (B3LYP) functional. It is shown that all spectra depend strongly on the geometries demonstrating the possibility of following the proton-transfer dynamics using photoelectron spectroscopy in pump-probe experiments.

18.
Phys Rev Lett ; 114(9): 093001, 2015 Mar 06.
Article in English | MEDLINE | ID: mdl-25793809

ABSTRACT

Direct measurements of Ar^{+} 1s^{-1}2p^{-1}nl double-core-hole shake-up states are reported using conventional single-channel photoemission, offering a new and relatively easy means to study such species. The high-quality results yield accurate energies and lifetimes of the double-core-hole states. Their photoemission spectrum also can be likened to 1s absorption of an exotic argon ion with a 2p core vacancy, providing new information about the spectroscopy of both this unusual ionic state as well as the neutral atom.

19.
J Chem Phys ; 141(14): 144301, 2014 Oct 14.
Article in English | MEDLINE | ID: mdl-25318716

ABSTRACT

We report a theoretical and experimental study of the high resolution resonant K(α) X-ray emission lines around the chlorine K-edge in gas phase 1,1-dichloroethylene. With the help of ab initio electronic structure calculations and cross section evaluation, we interpret the lowest lying peak in the X-ray absorption and emission spectra. The behavior of the K(α) emission lines with respect to frequency detuning highlights the existence of femtosecond nuclear dynamics on the dissociative Potential Energy Surface of the first K-shell core-excited state.

20.
Nat Commun ; 5: 4069, 2014 Jun 06.
Article in English | MEDLINE | ID: mdl-24906107

ABSTRACT

Studies of photoemission processes induced by hard X-rays including production of energetic electrons have become feasible due to recent substantial improvement of instrumentation. Novel dynamical phenomena have become possible to investigate in this new regime. Here we show a significant change in Auger emission following 1s photoionization of neon, which we attribute to the recoil of the Ne ion induced by the emission of a fast photoelectron. Because of the preferential motion of the ionized Ne atoms along two opposite directions, an Auger Doppler shift is revealed, which manifests itself as a gradual broadening and doubling of the Auger spectral features. This Auger Doppler effect should be a general phenomenon in high-energy photoemission of both isolated atoms and molecules, which will have to be taken into account in studies of other recoil effects such as vibrational or rotational recoil in molecules, and may also have consequences in measurements in solids.

SELECTION OF CITATIONS
SEARCH DETAIL
...