Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Elife ; 122024 Feb 08.
Article in English | MEDLINE | ID: mdl-38329112

ABSTRACT

Large reductions in the global malaria burden have been achieved, but plateauing funding poses a challenge for progressing towards the ultimate goal of malaria eradication. Using previously published mathematical models of Plasmodium falciparum and Plasmodium vivax transmission incorporating insecticide-treated nets (ITNs) as an illustrative intervention, we sought to identify the global funding allocation that maximized impact under defined objectives and across a range of global funding budgets. The optimal strategy for case reduction mirrored an allocation framework that prioritizes funding for high-transmission settings, resulting in total case reductions of 76% and 66% at intermediate budget levels, respectively. Allocation strategies that had the greatest impact on case reductions were associated with lesser near-term impacts on the global population at risk. The optimal funding distribution prioritized high ITN coverage in high-transmission settings endemic for P. falciparum only, while maintaining lower levels in low-transmission settings. However, at high budgets, 62% of funding was targeted to low-transmission settings co-endemic for P. falciparum and P. vivax. These results support current global strategies to prioritize funding to high-burden P. falciparum-endemic settings in sub-Saharan Africa to minimize clinical malaria burden and progress towards elimination, but highlight a trade-off with 'shrinking the map' through a focus on near-elimination settings and addressing the burden of P. vivax.


Subject(s)
Insecticide-Treated Bednets , Malaria, Falciparum , Malaria, Vivax , Malaria , Humans , Malaria/epidemiology , Malaria/prevention & control , Malaria, Falciparum/epidemiology , Malaria, Falciparum/prevention & control , Malaria, Vivax/epidemiology , Malaria, Vivax/prevention & control , Africa South of the Sahara/epidemiology
2.
Vaccine ; 41(11): 1885-1891, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36781331

ABSTRACT

OBJECTIVES: To estimate the expected socio-economic value of booster vaccination in terms of averted deaths and averted closures of businesses and schools using simulation modelling. METHODS: The value of booster vaccination in Indonesia is estimated by comparing simulated societal costs under a twelve-month, 187-million-dose Moderna booster vaccination campaign to costs without boosters. The costs of an epidemic and its mitigation consist of lost lives, economic closures and lost education; cost-minimising non-pharmaceutical mitigation is chosen for each scenario. RESULTS: The cost-minimising non-pharmaceutical mitigation depends on the availability of vaccines: the differences between the two scenarios are 14 to 19 million years of in-person education and $153 to $204 billion in economic activity. The value of the booster campaign ranges from $2,500 ($1,400-$4,100) to $2,800 ($1,700-$4,600) per dose in the first year, depending on life-year valuations. CONCLUSIONS: The societal benefits of booster vaccination are substantial. Much of the value of vaccination resides in the reduced need for costly non-pharmaceutical mitigation. We propose cost minimisation as a tool for policy decision-making and valuation of vaccination, taking into account all socio-economic costs, and not averted deaths alone.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Indonesia/epidemiology , Cost-Benefit Analysis , COVID-19/prevention & control , Vaccination
3.
Nat Comput Sci ; 2(4): 223-233, 2022 Apr.
Article in English | MEDLINE | ID: mdl-38177553

ABSTRACT

To study the trade-off between economic, social and health outcomes in the management of a pandemic, DAEDALUS integrates a dynamic epidemiological model of SARS-CoV-2 transmission with a multi-sector economic model, reflecting sectoral heterogeneity in transmission and complex supply chains. The model identifies mitigation strategies that optimize economic production while constraining infections so that hospital capacity is not exceeded but allowing essential services, including much of the education sector, to remain active. The model differentiates closures by economic sector, keeping those sectors open that contribute little to transmission but much to economic output and those that produce essential services as intermediate or final consumption products. In an illustrative application to 63 sectors in the United Kingdom, the model achieves an economic gain of between £161 billion (24%) and £193 billion (29%) compared to a blanket lockdown of non-essential activities over six months. Although it has been designed for SARS-CoV-2, DAEDALUS is sufficiently flexible to be applicable to pandemics with different epidemiological characteristics.

SELECTION OF CITATIONS
SEARCH DETAIL
...