Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters










Publication year range
1.
J Exp Clin Cancer Res ; 43(1): 133, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38698462

ABSTRACT

BACKGROUND: Targeting ferroptosis has been identified as a promising approach for the development of cancer therapies. Monounsaturated fatty acid (MUFA) is a type of lipid that plays a crucial role in inhibiting ferroptosis. Ficolin 3 (FCN3) is a component of the complement system, serving as a recognition molecule against pathogens in the lectin pathway. Recent studies have reported that FCN3 demonstrates inhibitory effects on the progression of certain tumors. However, whether FCN3 can modulate lipid metabolism and ferroptosis remains largely unknown. METHODS: Cell viability, BODIPY-C11 staining, and MDA assay were carried out to detect ferroptosis. Primary hepatocellular carcinoma (HCC) and xenograft models were utilized to investigate the effect of FCN3 on the development of HCC in vivo. A metabonomic analysis was conducted to assess alterations in intracellular and HCC intrahepatic lipid levels. RESULTS: Our study elucidates a substantial decrease in the expression of FCN3, a component of the complement system, leads to MUFA accumulation in human HCC specimens and thereby significantly promotes ferroptosis resistance. Overexpression of FCN3 efficiently sensitizes HCC cells to ferroptosis, resulting in the inhibition of the oncogenesis and progression of both primary HCC and subcutaneous HCC xenograft. Mechanistically, FCN3 directly binds to the insulin receptor ß (IR-ß) and its pro-form (pro-IR), inhibiting pro-IR cleavage and IR-ß phosphorylation, ultimately resulting in IR-ß inactivation. This inactivation of IR-ß suppresses the expression of sterol regulatory element binding protein-1c (SREBP1c), which subsequently suppresses the transcription of genes related to de novo lipogenesis (DNL) and lipid desaturation, and consequently downregulates intracellular MUFA levels. CONCLUSIONS: These findings uncover a novel regulatory mechanism by which FCN3 enhances the sensitivity of HCC cells to ferroptosis, indicating that targeting FCN3-induced ferroptosis is a promising strategy for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Ferroptosis , Liver Neoplasms , Animals , Female , Humans , Male , Mice , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Disease Models, Animal , Down-Regulation , Fatty Acids, Monounsaturated/metabolism , Fatty Acids, Monounsaturated/pharmacology , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Liver Neoplasms/genetics , Sterol Regulatory Element Binding Protein 1/metabolism , Sterol Regulatory Element Binding Protein 1/genetics , Xenograft Model Antitumor Assays
2.
Nat Commun ; 15(1): 3175, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38609408

ABSTRACT

Although papillary thyroid cancer (PTC) has a good prognosis, its recurrence rate is high and remains a core concern in the clinic. Molecular factors contributing to different recurrence risks (RRs) remain poorly defined. Here, we perform an integrative proteogenomic and metabolomic characterization of 102 Chinese PTC patients with different RRs. Genomic profiling reveals that mutations in MUC16 and TERT promoter as well as multiple gene fusions like NCOA4-RET are enriched by the high RR. Integrative multi-omics analyses further describe the multi-dimensional characteristics of PTC, especially in metabolism pathways, and delineate dominated molecular patterns of different RRs. Moreover, the PTC patients are clustered into four subtypes (CS1: low RR and BRAF-like; CS2: high RR and metabolism type, worst prognosis; CS3: high RR and immune type, better prognosis; CS4: high RR and BRAF-like) based on the omics data. Notably, the subtypes display significant differences considering BRAF and TERT promoter mutations, metabolism and immune pathway profiles, epithelial cell compositions, and various clinical factors (especially RRs and prognosis) as well as druggable targets. This study can provide insights into the complex molecular characteristics of PTC recurrences and help promote early diagnosis and precision treatment of recurrent PTC.


Subject(s)
Proteogenomics , Thyroid Neoplasms , Humans , Thyroid Cancer, Papillary/genetics , Proto-Oncogene Proteins B-raf/genetics , Metabolomics , Thyroid Neoplasms/genetics
3.
Cell Death Dis ; 15(2): 175, 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38413563

ABSTRACT

Immunotherapy has become a prominent first-line cancer treatment strategy. In non-small cell lung cancer (NSCLC), the expression of PD-L1 induces an immuno-suppressive effect to protect cancer cells from immune elimination, which designates PD-L1 as an important target for immunotherapy. However, little is known about the regulation mechanism and the function of PD-L1 in lung cancer. In this study, we have discovered that KEAP1 serves as an E3 ligase to promote PD-L1 ubiquitination and degradation. We found that overexpression of KEAP1 suppressed tumor growth and promoted cytotoxic T-cell activation in vivo. These results indicate the important role of KEAP1 in anti-cancer immunity. Moreover, the combination of elevated KEAP1 expression with anti-PD-L1 immunotherapy resulted in a synergistic effect on both tumor growth and cytotoxic T-cell activation. Additionally, we found that the expressions of KEAP1 and PD-L1 were associated with NSCLC prognosis. In summary, our findings shed light on the mechanism of PD-L1 degradation and how NSCLC immune escape through KEAP1-PD-L1 signaling. Our results also suggest that KEAP1 agonist might be a potential clinical drug to boost anti-tumor immunity and improve immunotherapies in NSCLC.


Subject(s)
Antineoplastic Agents , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Carcinoma, Non-Small-Cell Lung/metabolism , Lung Neoplasms/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , B7-H1 Antigen/metabolism , NF-E2-Related Factor 2/metabolism , Antineoplastic Agents/therapeutic use
4.
FASEB J ; 37(12): e23319, 2023 12.
Article in English | MEDLINE | ID: mdl-38010918

ABSTRACT

Glutamine synthetase (GS) is a crucial enzyme involved in de novo synthesis of glutamine and participates in several biological processes, including nitrogen metabolism, nucleotide synthesis, and amino acid synthesis. Post-translational modification makes GS more adaptable to the needs of cells, and acetylation modification of GS at double sites has attracted considerable attention. Despite very intensive research, how SUMOylation affects GS activity at a molecular level remains unclear. Here, we report that previously undiscovered GS SUMOylation which is deficient mutant K372R of GS exhibits more bluntness under glutamine starvation. Mechanistically, glutamine deprivation triggers the GS SUMOylation, and this SUMOylation impaired the protein stability of GS, within a concomitant decrease in enzymatic activity. In addition, we identified SAE1, Ubc9, and PIAS1 as the assembly enzymes of GS SUMOylation respectively. Furthermore, Senp1/2 functions as a SUMO-specific protease to reverse the SUMOylation of GS. This study provides the first evidence that SUMOylation serves as a regulatory mechanism for determining the GS enzymatic activity, contributing to understanding the GS regulation roles in various cellular and pathophysiological processes.


Subject(s)
Sumoylation , Ubiquitin-Conjugating Enzymes , Ubiquitin-Conjugating Enzymes/metabolism , Lysine/metabolism , Glutamine/metabolism , Glutamate-Ammonia Ligase/metabolism
5.
Cell Res ; 33(11): 835-850, 2023 11.
Article in English | MEDLINE | ID: mdl-37726403

ABSTRACT

Glycolytic intermediary metabolites such as fructose-1,6-bisphosphate can serve as signals, controlling metabolic states beyond energy metabolism. However, whether glycolytic metabolites also play a role in controlling cell fate remains unexplored. Here, we find that low levels of glycolytic metabolite 3-phosphoglycerate (3-PGA) can switch phosphoglycerate dehydrogenase (PHGDH) from cataplerosis serine synthesis to pro-apoptotic activation of p53. PHGDH is a p53-binding protein, and when unoccupied by 3-PGA interacts with the scaffold protein AXIN in complex with the kinase HIPK2, both of which are also p53-binding proteins. This leads to the formation of a multivalent p53-binding complex that allows HIPK2 to specifically phosphorylate p53-Ser46 and thereby promote apoptosis. Furthermore, we show that PHGDH mutants (R135W and V261M) that are constitutively bound to 3-PGA abolish p53 activation even under low glucose conditions, while the mutants (T57A and T78A) unable to bind 3-PGA cause constitutive p53 activation and apoptosis in hepatocellular carcinoma (HCC) cells, even in the presence of high glucose. In vivo, PHGDH-T57A induces apoptosis and inhibits the growth of diethylnitrosamine-induced mouse HCC, whereas PHGDH-R135W prevents apoptosis and promotes HCC growth, and knockout of Trp53 abolishes these effects above. Importantly, caloric restriction that lowers whole-body glucose levels can impede HCC growth dependent on PHGDH. Together, these results unveil a mechanism by which glucose availability autonomously controls p53 activity, providing a new paradigm of cell fate control by metabolic substrate availability.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Phosphoglycerate Dehydrogenase/genetics , Phosphoglycerate Dehydrogenase/metabolism , Tumor Suppressor Protein p53/metabolism , Serine/metabolism , Cell Line, Tumor
6.
Cell Commun Signal ; 21(1): 266, 2023 09 28.
Article in English | MEDLINE | ID: mdl-37770930

ABSTRACT

Integrins are transmembrane receptors that possess distinct ligand-binding specificities in the extracellular domain and signaling properties in the cytoplasmic domain. While most integrins have a short cytoplasmic tail, integrin ß4 has a long cytoplasmic tail that can indirectly interact with the actin cytoskeleton. Additionally, 'inside-out' signals can induce integrins to adopt a high-affinity extended conformation for their appropriate ligands. These properties enable integrins to transmit bidirectional cellular signals, making it a critical regulator of various biological processes.Integrin expression and function are tightly linked to various aspects of tumor progression, including initiation, angiogenesis, cell motility, invasion, and metastasis. Certain integrins have been shown to drive tumorigenesis or amplify oncogenic signals by interacting with corresponding receptors, while others have marginal or even suppressive effects. Additionally, different α/ß subtypes of integrins can exhibit opposite effects. Integrin-mediated signaling pathways including Ras- and Rho-GTPase, TGFß, Hippo, Wnt, Notch, and sonic hedgehog (Shh) are involved in various stages of tumorigenesis. Therefore, understanding the complex regulatory mechanisms and molecular specificities of integrins are crucial to delaying cancer progression and suppressing tumorigenesis. Furthermore, the development of integrin-based therapeutics for cancer are of great importance.This review provides an overview of integrin-dependent bidirectional signaling mechanisms in cancer that can either support or oppose tumorigenesis by interacting with various signaling pathways. Finally, we focus on the future opportunities for emergent therapeutics based on integrin agonists. Video Abstract.


Subject(s)
Hedgehog Proteins , Neoplasms , Humans , Integrins/metabolism , Signal Transduction , Carcinogenesis
7.
Cell Death Dis ; 14(7): 462, 2023 07 25.
Article in English | MEDLINE | ID: mdl-37488117

ABSTRACT

Multiple primary lung cancers (MPLCs) pose diagnostic and therapeutic challenges in clinic. Here, we orchestrated the cellular and spatial architecture of MPLCs by combining single-cell RNA-sequencing and spatial transcriptomics. Notably, we identified a previously undescribed sub-population of epithelial cells termed as CLDN2+ alveolar type II (AT2) which was specifically enriched in MPLCs. This subtype was observed to possess a relatively stationary state, play a critical role in cellular communication, aggregate spatially in tumor tissues, and dominate the malignant histopathological patterns. The CLDN2 protein expression can help distinguish MPLCs from intrapulmonary metastasis and solitary lung cancer. Moreover, a cell surface receptor-TNFRSF18/GITR was highly expressed in T cells of MPLCs, suggesting TNFRSF18 as one potential immunotherapeutic target in MPLCs. Meanwhile, high inter-lesion heterogeneity was observed in MPLCs. These findings will provide insights into diagnostic biomarkers and therapeutic targets and advance our understanding of the cellular and spatial architecture of MPLCs.


Subject(s)
Lung Neoplasms , Neoplasms, Multiple Primary , Humans , Epithelial Cells , Cell Communication , Gene Expression Profiling
8.
Biomolecules ; 13(6)2023 06 16.
Article in English | MEDLINE | ID: mdl-37371581

ABSTRACT

The Wnt signaling pathway plays a critical role in regulating normal cellular processes, including proliferation, differentiation, and apoptosis. Dysregulation of Wnt signaling has been implicated in various human diseases, including cancer. ß-catenin and LEF1 are key mediators of Wnt signaling, and their dysregulation is a hallmark of many cancer types. In this study, we aimed to identify the deubiquitinases (DUBs) that regulate the Wnt signaling pathway through the essential component LEF1. Screening candidate DUBs from the human DUB library, we discovered that OTUD7B interacts with LEF1 and activates Wnt signaling. OTUD7B and LEF1 interact with each other through the UBA and HMG domains, respectively. Furthermore, OTUD7B promotes the nuclear localization of LEF1, leading to an increased interaction with ß-catenin in the nucleus while not noticeably affecting ubiquitination on LEF1. Using qPCR array analysis, we found that OTUD7B overexpression leads to an upregulation of 75% of the tested Wnt target genes compared to the control. These findings suggest that OTUD7B may serve as a potential therapeutic target in human diseases, including cancers where Wnt signaling is frequently dysregulated.


Subject(s)
Neoplasms , Wnt Signaling Pathway , Humans , Wnt Signaling Pathway/genetics , beta Catenin/metabolism , Transcriptional Activation , Up-Regulation , Endopeptidases , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphoid Enhancer-Binding Factor 1/metabolism
9.
J Zhejiang Univ Sci B ; 24(5): 397-405, 2023 May 15.
Article in English, Chinese | MEDLINE | ID: mdl-37190889

ABSTRACT

Mammalian target of rapamycin (mTOR) controls cellular anabolism, and mTOR signaling is hyperactive in most cancer cells. As a result, inhibition of mTOR signaling benefits cancer patients. Rapamycin is a US Food and Drug Administration (FDA)-approved drug, a specific mTOR complex 1 (mTORC1) inhibitor, for the treatment of several different types of cancer. However, rapamycin is reported to inhibit cancer growth rather than induce apoptosis. Pyruvate dehydrogenase complex (PDHc) is the gatekeeper for mitochondrial pyruvate oxidation. PDHc inactivation has been observed in a number of cancer cells, and this alteration protects cancer cells from senescence and nicotinamide adenine dinucleotide (NAD+|) exhaustion. In this paper, we describe our finding that rapamycin treatment promotes pyruvate dehydrogenase E1 subunit alpha 1 (PDHA1) phosphorylation and leads to PDHc inactivation dependent on mTOR signaling inhibition in cells. This inactivation reduces the sensitivity of cancer cells' response to rapamycin. As a result, rebooting PDHc activity with dichloroacetic acid (DCA), a pyruvate dehydrogenase kinase (PDK) inhibitor, promotes cancer cells' susceptibility to rapamycin treatment in vitro and in vivo.


Subject(s)
Neoplasms , Sirolimus , Humans , Sirolimus/pharmacology , Dichloroacetic Acid/pharmacology , Pyruvate Dehydrogenase Complex , TOR Serine-Threonine Kinases , Mechanistic Target of Rapamycin Complex 1 , Neoplasms/drug therapy
10.
Nat Cell Biol ; 25(6): 848-864, 2023 06.
Article in English | MEDLINE | ID: mdl-37217599

ABSTRACT

Mitochondrial proteases are emerging as key regulators of mitochondrial plasticity and acting as both protein quality surveillance and regulatory enzymes by performing highly regulated proteolytic reactions. However, it remains unclear whether the regulated mitochondrial proteolysis is mechanistically linked to cell identity switching. Here we report that cold-responsive mitochondrial proteolysis is a prerequisite for white-to-beige adipocyte cell fate programming during adipocyte thermogenic remodelling. Thermogenic stimulation selectively promotes mitochondrial proteostasis in mature white adipocytes via the mitochondrial protease LONP1. Disruption of LONP1-dependent proteolysis substantially impairs cold- or ß3 adrenergic agonist-induced white-to-beige identity switching of mature adipocytes. Mechanistically, LONP1 selectively degrades succinate dehydrogenase complex iron sulfur subunit B and ensures adequate intracellular succinate levels. This alters the histone methylation status on thermogenic genes and thereby enables adipocyte cell fate programming. Finally, augmented LONP1 expression raises succinate levels and corrects ageing-related impairments in white-to-beige adipocyte conversion and adipocyte thermogenic capacity. Together, these findings reveal that LONP1 links proteolytic surveillance to mitochondrial metabolic rewiring and directs cell identity conversion during adipocyte thermogenic remodelling.


Subject(s)
Adipocytes , Mitochondria , Adipocytes, Brown/metabolism , Mitochondria/metabolism , Peptide Hydrolases/metabolism , Proteolysis , Succinates/metabolism , Mitochondrial Proteins/metabolism
11.
Front Pharmacol ; 14: 1126119, 2023.
Article in English | MEDLINE | ID: mdl-37113762

ABSTRACT

Background and purpose: GPR35, a member of the orphan G-protein-coupled receptor, was recently implicated in colorectal cancer (CRC). However, whether targeting GPR35 by antagonists can inhibit its pro-cancer role has yet to be answered. Experimental approach: We applied antagonist CID-2745687 (CID) in established GPR35 overexpressing and knock-down CRC cell lines to understand its anti-cell proliferation property and the underlying mechanism. Key results: Although GPR35 did not promote cell proliferation in 2D conditions, it promoted anchorage-independent growth in soft-agar, which was reduced by GPR35 knock-down and CID treatment. Furthermore, YAP/TAZ target genes were expressed relatively higher in GPR35 overexpressed cells and lower in GPR35 knock-down cells. YAP/TAZ activity is required for anchorage-independent growth of CRC cells. By detecting YAP/TAZ target genes, performing TEAD4 luciferase reporter assay, and examining YAP phosphorylation and TAZ protein expression level, we found YAP/TAZ activity is positively correlated to GPR35 expression level, which CID disrupted in GPR35 overexpressed cells, but not in GPR35 knock-down cells. Intriguingly, GPR35 agonists did not promote YAP/TAZ activity but ameliorated CID's inhibitory effect; GPR35-promoted YAP/TAZ activity was only partly attenuated by ROCK1/2 inhibitor. Conclusion and implications: GPR35 promoted YAP/TAZ activity partly through Rho-GTPase with its agonist-independent constitutive activity, and CID exhibited its inhibitory effect. GPR35 antagonists are promising anti-cancer agents that target hyperactivation and overexpression of YAP/TAZ in CRC.

12.
Eur J Pharmacol ; 949: 175719, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37054942

ABSTRACT

GPR35, a class A G-protein-coupled receptor, is considered an orphan receptor; the endogenous ligand and precise physiological function of GPR35 remain obscure. GPR35 is expressed relatively highly in the gastrointestinal tract and immune cells. It plays a role in colorectal diseases like inflammatory bowel diseases (IBDs) and colon cancer. More recently, the development of GPR35 targeting anti-IBD drugs is in solid request. Nevertheless, the development process is in stagnation due to the lack of a highly potent GPR35 agonist that is also active comparably in both human and mouse orthologs. Therefore, we proposed to find compounds for GPR35 agonist development, especially for the human ortholog of GPR35. As an efficient way to pick up a safe and effective GPR35 targeting anti-IBD drug, we screened Food and Drug Administration (FDA)-approved 1850 drugs using a two-step DMR assay. Interestingly, we found aminosalicylates, first-line medicine for IBDs whose precise target remains unknown, exhibited activity on both human and mouse GPR35. Among these, pro-drug olsalazine showed the most potency on GPR35 agonism, inducing ERK phosphorylation and ß-arrestin2 translocation. In dextran sodium sulfate (DSS)-induced colitis, the protective effect on disease progression and inhibitory effect on TNFα mRNA expression, NF-κB and JAK-STAT3 pathway of olsalazine are compromised in GPR35 knock-out mice. The present study identified a target for first-line medicine aminosalicylates, highlighted that uncleaved pro-drug olsalazine is effective, and provided a new concept for the design of aminosalicylic GPR35 targeting anti-IBD drug.


Subject(s)
Aminosalicylic Acid , Colitis , Inflammatory Bowel Diseases , Prodrugs , Mice , Humans , Animals , Prodrugs/metabolism , Colitis/chemically induced , Colitis/drug therapy , Colitis/prevention & control , Aminosalicylic Acids/adverse effects , Inflammatory Bowel Diseases/drug therapy , Aminosalicylic Acid/adverse effects , NF-kappa B/metabolism , Dextran Sulfate/toxicity , Mice, Inbred C57BL , Colon , Disease Models, Animal , Receptors, G-Protein-Coupled/metabolism
13.
Clin Transl Med ; 13(3): e1204, 2023 03.
Article in English | MEDLINE | ID: mdl-36881608

ABSTRACT

Ubiquitination is one of the most important post-translational modifications which plays a significant role in conserving the homeostasis of cellular proteins. In the ubiquitination process, ubiquitin is conjugated to target protein substrates for degradation, translocation or activation, dysregulation of which is linked to several diseases including various types of cancers. E3 ubiquitin ligases are regarded as the most influential ubiquitin enzyme owing to their ability to select, bind and recruit target substrates for ubiquitination. In particular, E3 ligases are pivotal in the cancer hallmarks pathways where they serve as tumour promoters or suppressors. The specificity of E3 ligases coupled with their implication in cancer hallmarks engendered the development of compounds that specifically target E3 ligases for cancer therapy. In this review, we highlight the role of E3 ligases in cancer hallmarks such as sustained proliferation via cell cycle progression, immune evasion and tumour promoting inflammation, and in the evasion of apoptosis. In addition, we summarise the application and the role of small compounds that target E3 ligases for cancer treatment along with the significance of targeting E3 ligases as potential cancer therapy.


Subject(s)
Neoplasms , Ubiquitin-Protein Ligases , Humans , Ubiquitin-Protein Ligases/genetics , Neoplasms/drug therapy , Ubiquitination , Ubiquitin , Apoptosis
14.
Gut ; 72(3): 501-511, 2023 03.
Article in English | MEDLINE | ID: mdl-35803704

ABSTRACT

OBJECTIVE: Methionine metabolism is involved in a myriad of cellular functions, including methylation reactions and redox maintenance. Nevertheless, it remains unclear whether methionine metabolism, RNA methylation and antitumour immunity are molecularly intertwined. DESIGN: The antitumour immunity effect of methionine-restricted diet (MRD) feeding was assessed in murine models. The mechanisms of methionine and YTH domain-containing family protein 1 (YTHDF1) in tumour immune escape were determined in vitro and in vivo. The synergistic effects of MRD or YTHDF1 depletion with PD-1 blockade were also investigated. RESULTS: We found that dietary methionine restriction reduced tumour growth and enhanced antitumour immunity by increasing the number and cytotoxicity of tumour-infiltrating CD8+ T cells in different mouse models. Mechanistically, the S-adenosylmethionine derived from methionine metabolism promoted the N6-methyladenosine (m6A) methylation and translation of immune checkpoints, including PD-L1 and V-domain Ig suppressor of T cell activation (VISTA), in tumour cells. Furthermore, MRD or m6A-specific binding protein YTHDF1 depletion inhibited tumour growth by restoring the infiltration of CD8+ T cells, and synergised with PD-1 blockade for better tumour control. Clinically, YTHDF1 expression correlated with poor prognosis and immunotherapy outcomes for cancer patients. CONCLUSIONS: Methionine and YTHDF1 play a critical role in anticancer immunity through regulating the functions of T cells. Targeting methionine metabolism or YTHDF1 could be a potential new strategy for cancer immunotherapy.


Subject(s)
Methionine , Neoplasms , Mice , Animals , Methionine/metabolism , CD8-Positive T-Lymphocytes , Methylation , Programmed Cell Death 1 Receptor , Racemethionine/metabolism
16.
Nat Metab ; 4(10): 1369-1401, 2022 10.
Article in English | MEDLINE | ID: mdl-36217034

ABSTRACT

The activity of 5'-adenosine monophosphate-activated protein kinase (AMPK) is inversely correlated with the cellular availability of glucose. When glucose levels are low, the glycolytic enzyme aldolase is not bound to fructose-1,6-bisphosphate (FBP) and, instead, signals to activate lysosomal AMPK. Here, we show that blocking FBP binding to aldolase with the small molecule aldometanib selectively activates the lysosomal pool of AMPK and has beneficial metabolic effects in rodents. We identify aldometanib in a screen for aldolase inhibitors and show that it prevents FBP from binding to v-ATPase-associated aldolase and activates lysosomal AMPK, thereby mimicking a cellular state of glucose starvation. In male mice, aldometanib elicits an insulin-independent glucose-lowering effect, without causing hypoglycaemia. Aldometanib also alleviates fatty liver and nonalcoholic steatohepatitis in obese male rodents. Moreover, aldometanib extends lifespan and healthspan in both Caenorhabditis elegans and mice. Taken together, aldometanib mimics and adopts the lysosomal AMPK activation pathway associated with glucose starvation to exert physiological roles, and might have potential as a therapeutic for metabolic disorders in humans.


Subject(s)
Insulins , Starvation , Humans , Male , Mice , Animals , AMP-Activated Protein Kinases/metabolism , Glucose/metabolism , Fructose-Bisphosphate Aldolase/metabolism , Lysosomes/metabolism , Starvation/metabolism , Adenosine Triphosphatases/metabolism , Caenorhabditis elegans , Adenosine Monophosphate/metabolism , Fructose/metabolism , Insulins/metabolism
18.
Nat Metab ; 4(8): 1022-1040, 2022 08.
Article in English | MEDLINE | ID: mdl-35995997

ABSTRACT

Cholesterol contributes to the structural basis of biological membranes and functions as a signaling molecule, whose dysregulation has been associated with various human diseases. Here, we report that the long non-coding RNA (lncRNA) SNHG6 increases progression from non-alcoholic fatty liver disease (NAFLD) to hepatocellular carcinoma (HCC) by modulating cholesterol-induced mTORC1 activation. Mechanistically, cholesterol binds ER-anchored FAF2 protein to promote the formation of a SNHG6-FAF2-mTOR complex. As a putative cholesterol effector, SNHG6 enhances cholesterol-dependent mTORC1 lysosomal recruitment and activation via enhancing FAF2-mTOR interaction at ER-lysosome contacts, thereby coordinating mTORC1 kinase cascade activation with cellular cholesterol biosynthesis in a self-amplified cycle to accelerate cholesterol-driven NAFLD-HCC development. Notably, loss of SNHG6 inhibits mTORC1 signaling and impairs growth of patient-derived xenograft liver cancer tumors, identifyifng SNHG6 as a potential target for liver cancer treatment. Together, our findings illustrate the crucial role of organelle-associated lncRNA in organelle communication, nutrient sensing, and kinase cascades.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Non-alcoholic Fatty Liver Disease , RNA, Long Noncoding/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cholesterol , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/metabolism , Mechanistic Target of Rapamycin Complex 1/metabolism , Non-alcoholic Fatty Liver Disease/genetics , RNA, Long Noncoding/metabolism
19.
Front Pharmacol ; 13: 906043, 2022.
Article in English | MEDLINE | ID: mdl-36034784

ABSTRACT

Melanoma is the most aggressive type of skin cancer with a high incidence and low survival rate. More than half of melanomas present the activating BRAF mutations, along which V600E mutant represents 70%-90%. Vemurafenib (Vem) is an FDA-approved small-molecule kinase inhibitor that selectively targets activated BRAF V600E and inhibits its activity. However, the majority of patients treated with Vem develop acquired resistance. Hence, this study aims to explore a new treatment strategy to overcome the Vem resistance. Here, we found that a potential anticancer drug norcantharidin (NCTD) displayed a more significant proliferation inhibitory effect against Vem-resistant melanoma cells (A375R) than the parental melanoma cells (A375), which promised to be a therapeutic agent against BRAF V600E-mutated and acquired Vem-resistant melanoma. The metabolomics analysis showed that NCTD could, especially reverse the upregulation of pentose phosphate pathway and lipogenesis resulting from the Vem resistance. In addition, the transcriptomic analysis showed a dramatical downregulation in genes related to lipid metabolism and mammalian target of the rapamycin (mTOR) signaling pathway in A375R cells, but not in A375 cells, upon NCTD treatment. Moreover, NCTD upregulated butyrophilin (BTN) family genes, which played important roles in modulating T-cell response. Consistently, we found that Vem resistance led to an obvious elevation of the p-mTOR expression, which could be remarkably reduced by NCTD treatment. Taken together, NCTD may serve as a promising therapeutic option to resolve the problem of Vem resistance and to improve patient outcomes by combining with immunomodulatory therapy.

20.
Sci Adv ; 8(30): eabo0340, 2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35895846

ABSTRACT

Mitochondrial quality in skeletal muscle is crucial for maintaining energy homeostasis during metabolic stresses. However, how muscle mitochondrial quality is controlled and its physiological impacts remain unclear. Here, we demonstrate that mitoprotease LONP1 is essential for preserving muscle mitochondrial proteostasis and systemic metabolic homeostasis. Skeletal muscle-specific deletion of Lon protease homolog, mitochondrial (LONP1) impaired mitochondrial protein turnover, leading to muscle mitochondrial proteostasis stress. A benefit of this adaptive response was the complete resistance to diet-induced obesity. These favorable metabolic phenotypes were recapitulated in mice overexpressing LONP1 substrate ΔOTC in muscle mitochondria. Mechanistically, mitochondrial proteostasis imbalance elicits an unfolded protein response (UPRmt) in muscle that acts distally to modulate adipose tissue and liver metabolism. Unexpectedly, contrary to its previously proposed role, ATF4 is dispensable for the long-range protective response of skeletal muscle. Thus, these findings reveal a pivotal role of LONP1-dependent mitochondrial proteostasis in directing muscle UPRmt to regulate systemic metabolism.

SELECTION OF CITATIONS
SEARCH DETAIL
...