Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(11)2024 Jun 02.
Article in English | MEDLINE | ID: mdl-38894380

ABSTRACT

X-ray images typically contain complex background information and abundant small objects, posing significant challenges for object detection in security tasks. Most existing object detection methods rely on complex networks and high computational costs, which poses a challenge to implement lightweight models. This article proposes Fine-YOLO to achieve rapid and accurate detection in the security domain. First, a low-parameter feature aggregation (LPFA) structure is designed for the backbone feature network of YOLOv7 to enhance its ability to learn more information with a lighter structure. Second, a high-density feature aggregation (HDFA) structure is proposed to solve the problem of loss of local details and deep location information caused by the necked feature fusion network in YOLOv7-Tiny-SiLU, connecting cross-level features through max-pooling. Third, the Normalized Wasserstein Distance (NWD) method is employed to alleviate the convergence complexity resulting from the extreme sensitivity of bounding box regression to small objects. The proposed Fine-YOLO model is evaluated on the EDS dataset, achieving a detection accuracy of 58.3% with only 16.1 M parameters. In addition, an auxiliary validation is performed on the NEU-DET dataset, the detection accuracy reaches 73.1%. Experimental results show that Fine-YOLO is not only suitable for security, but can also be extended to other inspection areas.

2.
Sensors (Basel) ; 17(11)2017 Nov 07.
Article in English | MEDLINE | ID: mdl-29112143

ABSTRACT

Simultaneous localization and mapping (SLAM) is emerging as a prominent issue in computer vision and next-generation core technology for robots, autonomous navigation and augmented reality. In augmented reality applications, fast camera pose estimation and true scale are important. In this paper, we present an adaptive monocular visual-inertial SLAM method for real-time augmented reality applications in mobile devices. First, the SLAM system is implemented based on the visual-inertial odometry method that combines data from a mobile device camera and inertial measurement unit sensor. Second, we present an optical-flow-based fast visual odometry method for real-time camera pose estimation. Finally, an adaptive monocular visual-inertial SLAM is implemented by presenting an adaptive execution module that dynamically selects visual-inertial odometry or optical-flow-based fast visual odometry. Experimental results show that the average translation root-mean-square error of keyframe trajectory is approximately 0.0617 m with the EuRoC dataset. The average tracking time is reduced by 7.8%, 12.9%, and 18.8% when different level-set adaptive policies are applied. Moreover, we conducted experiments with real mobile device sensors, and the results demonstrate the effectiveness of performance improvement using the proposed method.

SELECTION OF CITATIONS
SEARCH DETAIL
...