Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
World J Mens Health ; 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38449457

ABSTRACT

PURPOSE: This study elucidates the mechanism of the physiological effect of cannabidiol (CBD) by assessing its impact on lipopolysaccharide (LPS)-induced inflammation in RWPE-1 cells and prostatitis-induced by 17ß-estradiol and dihydrotestosterone in a rat model, focusing on its therapeutic potential for chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS). MATERIALS AND METHODS: RWPE-1 cells were stratified in vitro into three groups: (1) controls, (2) cells with LPS-induced inflammation, and (3) cells with LPS-induced inflammation and treated with CBD. Enzyme-linked immunosorbent assays and western blots were performed on cellular components and supernatants after administration of CBD. Five groups of six Sprague-Dawley male rats were assigned: (1) control, (2) CP/CPPS, (3) CP/CPPS and treated with 50 mg/kg CBD, (4) CP/CPPS and treated with 100 mg/kg CBD, and (5) CP/CPPS and treated with 150 mg/kg CBD. Prostatitis was induced through administration of 17ß-estradiol and dihydrotestosterone. After four weeks of CBD treatment, a pain index was evaluated, and prostate tissue was collected for subsequent histologic examination and western blot analysis. RESULTS: CBD demonstrated efficacy in vivo for CP/CPPS and in vitro for inflammation. It inhibited the toll-like receptor 4 (TLR4)/nuclear factor-kappa B (NF-κB) pathway by activating the CB2 receptor, reducing expression of interleukin-6, tumor necrosis factor-alpha, and cyclooxygenase-2 (COX2) (p<0.01). CBD exhibited analgesic effects by activating and desensitizing the TRPV1 receptor. CONCLUSIONS: CBD inhibits the TLR4/NF-κB pathway by activating the CB2 receptor, desensitizes the TRPV1 receptor, and decreases the release of COX2. This results in relief of inflammation and pain in patients with CP/CPPS, indicating CBD as a potential treatment for CP/CPPS.

2.
World J Mens Health ; 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38449454

ABSTRACT

PURPOSE: The primary goal of this study is to evaluate the effect of the non-invasive radiofrequency hyperthermia (RFHT) device on chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) rat model and investigate the underlying mechanism. MATERIALS AND METHODS: In this study, Sprague-Dawley rats were randomly distributed into three groups: (1) normal control group, (2) CP/CPPS group, and (3) RFHT group. CP/CPPS rat models were induced by 17ß-estradiol and dihydrotestosterone for 4 weeks and RFHT was administered for 5 weeks after model establishment. During RFHT administration, core body temperatures were continuously monitored with a rectal probe. After administering RFHT, we assessed pain index for all groups and collected prostate tissues for Western blot analysis, immunofluorescence, and immunohistochemistry. We also collected adjacent organs to the prostate including urinary bladder, testes, and rectum for safety assessment via H&E staining along with a terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay. RESULTS: After administering RFHT, pain in rats was significantly alleviated compared to the CP/CPPS group. RFHT reduced high-mobility group box 1 (HMGB1) expression and improved inflammation by downregulating subsequent proinflammatory cytokines through inhibition of the toll-like receptor 4 (TLR4)-nuclear factor kappa B (NF-κB) pathway. In prostate-adjacent organs, no significant histological alteration or inflammatory infiltration was detected. The area of cell death also did not increase significantly after RFHT. CONCLUSIONS: In conclusion, RFHT demonstrated anti-inflammatory effects by inhibiting the HMGB1-TLR4-NF-κB pathway in CP/CPPS rat models. This suggests that RFHT could serve as a safe and promising therapeutic strategy for CP/CPPS.

3.
World J Mens Health ; 42(1): 157-167, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37382279

ABSTRACT

PURPOSE: To evaluate the anti-inflammatory and antioxidative effects of extracorporeal shockwave therapy (ESWT) on prostatitis and explore the mechanism of alleviating pain. MATERIALS AND METHODS: For in vitro testing, RWPE-1 cells were randomly divided into 5 groups: (1) RWPE-1 group (normal control), (2) LPS group (lipopolysaccharide inducing inflammation), (3) 0.1ESWT group (treated by 0.1 mJ/mm² energy level), (4) 0.2ESWT group (treated by 0.2 mJ/mm² energy level), and (5) 0.3ESWT group (treated by 0.3 mJ/mm² energy level). After ESWT was administered, cells and supernatant were collected for ELISA and western blot. For in vivo testing, Sprague-Dawley male rats were randomly divided into 3 groups: (1) normal group, (2) prostatitis group, and (3) ESWT group (n=12 for each). Prostatitis was induced by 17 beta-estradiol and dihydrotestosterone (DHT) administration. Four weeks after ESWT, the pain index was assessed for all groups and prostate tissues were collected for immunohistochemistry, immunofluorescence, apoptosis analysis and, western blot. RESULTS: Our in vitro studies showed that the optimal energy flux density of ESWT was 0.2 mJ/mm². In vivo, ESWT ameliorated discomfort in rats with prostatitis and inflammation symptoms were improved. Compared to normal rats, overexpressed NLRP3 inflammasomes triggered apoptosis in rats with prostatitis and this was improved by ESWT. TLR4-NFκB pathway was overactive after experimental prostatitis, compared to normal and ESWT groups, and prostatitis induced alterations in BAX/BAK pathway were inhibited by ESWT. CONCLUSIONS: ESWT improved CP/CPPS by reducing NLRP3 inflammasome and ameliorated apoptosis via inhibiting BAX/BAK pathway in a rat model. TLR4 may play a key role in bonding NLRP3 inflammasome and BAX/BAK pathways. ESWT might be a promising approach for the treatment of CP/CPPS.

4.
Oxid Med Cell Longev ; 2022: 5213573, 2022.
Article in English | MEDLINE | ID: mdl-35320975

ABSTRACT

Low-intensity extracorporeal shockwave therapy (Li-ESWT), as a microenergy therapy, has the effects of inhibiting oxidative stress, antiapoptosis, and tissue repair, which is increasingly applied to a variety of diseases. Our research aims to explore the protective effects of Li-ESWT in the aging rat model and its possible molecular mechanism through in vivo and in vitro experiments. In vitro, TM3 Leydig cells incubated with H2O2 were treated with Li-ESWT at 4 energy levels (0.01, 0.05, 0.1, and 0.2 mJ/mm2). In vivo, we employed an androgen-deficient rat model to simulate male aging and treated it with Li-ESWT at three different energy levels (0.01, 0.05, and 0.2 mJ/mm2). Li-ESWT increased the expression of vascular endothelial growth factor (VEGF) in TM3 cells, improved antioxidant capacity, and reduced apoptosis, with the effect being most significant at 0.05 mJ/mm2 energy level. In androgen-deficient rat model, LI-ESWT can improve sperm count, motility, and serum testosterone level, enhancing tissue antioxidant capacity and antiapoptotic ability, and the effect is most significant at 0.05 mJ/mm2 energy level. Therefore, Li-ESWT at an appropriate energy level can improve sperm count, motility, and serum testosterone levels in androgen-deficient rat models, reduce oxidative stress in the testis, and increase antioxidant capacity and antiapoptotic abilities. The mechanism of this condition might be related to the increased VEGF expression in Leydig cells by Li-ESWT.


Subject(s)
Extracorporeal Shockwave Therapy , Androgens/pharmacology , Animals , Hydrogen Peroxide , Male , Rats , Testis , Vascular Endothelial Growth Factor A
5.
Am J Physiol Cell Physiol ; 320(6): C1042-C1054, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33788631

ABSTRACT

Intestinal Tuft cells sense luminal contents to influence the mucosal immune response against eukaryotic infection. Paneth cells secrete antimicrobial proteins as part of the mucosal protective barrier. Defects in Tuft and Paneth cells occur commonly in various gut mucosal disorders. MicroRNA-195 (miR-195) regulates the stability and translation of target mRNAs and is involved in many aspects of cell processes and pathologies. Here, we reported the posttranscriptional mechanisms by which miR-195 regulates Tuft and Paneth cell function in the small intestinal epithelium. Mucosal tissues from intestinal epithelial tissue-specific miR-195 transgenic (miR195-Tg) mice had reduced numbers of double cortin-like kinase 1 (DCLK1)-positive (Tuft) and lysozyme-positive (Paneth) cells, compared with tissues from control mice, but there were no effects on Goblet cells and enterocytes. Intestinal organoids expressing higher miR-195 levels from miR195-Tg mice also exhibited fewer Tuft and Paneth cells. Transgenic expression of miR-195 in mice failed to alter growth of the small intestinal mucosa but increased vulnerability of the gut barrier in response to lipopolysaccharide (LPS). Studies aimed at investigating the mechanism underlying regulation of Tuft cells revealed that miR-195 directly interacted with the Dclk1 mRNA via its 3'-untranslated region and inhibited DCLK1 translation. Interestingly, the RNA-binding protein HuR competed with miR-195 for binding Dclk1 mRNA and increased DCLK1 expression. These results indicate that miR-195 suppresses the function of Tuft and Paneth cells in the small intestinal epithelium and further demonstrate that increased miR-195 disrupts Tuft cell function by inhibiting DCLK1 translation via interaction with HuR.


Subject(s)
Intestinal Mucosa/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , MicroRNAs/metabolism , Protein Serine-Threonine Kinases/metabolism , Animals , Caco-2 Cells , Cell Line , Cell Line, Tumor , Doublecortin-Like Kinases , Enterocytes/metabolism , Female , Goblet Cells/metabolism , HEK293 Cells , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Organoids/metabolism
6.
Cell Mol Gastroenterol Hepatol ; 9(4): 611-625, 2020.
Article in English | MEDLINE | ID: mdl-31862317

ABSTRACT

BACKGROUND & AIMS: The protective intestinal mucosal barrier consists of multiple elements including mucus and epithelial layers and immune defense; nonetheless, barrier dysfunction is common in various disorders. The imprinted and developmentally regulated long noncoding RNA H19 is involved in many cell processes and diseases. Here, we investigated the role of H19 in regulating Paneth and goblet cells and autophagy, and its impact on intestinal barrier dysfunction induced by septic stress. METHODS: Studies were conducted in H19-deficient (H19-/-) mice, mucosal tissues from patients with sepsis, primary enterocytes, and Caco-2 cells. Septic stress was induced by cecal ligation and puncture (CLP), and gut permeability was detected by tracer fluorescein isothiocyanate-dextran assays. The function of Paneth and goblet cells was examined by immunostaining for lysozyme and mucin 2, respectively, and autophagy was examined by microtubule-associated proteins 1A/1B light chain 3 II immunostaining and Western blot analysis. Intestinal organoids were isolated from H19-/- and control littermate mice and treated with lipopolysaccharide (LPS). RESULTS: Intestinal mucosal tissues in mice 24 hours after exposure to CLP and in patients with sepsis showed high H19 levels, associated with intestinal barrier dysfunction. Targeted deletion of the H19 gene in mice enhanced the function of Paneth and goblet cells and promoted autophagy in the small intestinal mucosa. Knockout of H19 protected Paneth and goblet cells against septic stress, preserved autophagy activation, and promoted gut barrier function after exposure to CLP. Compared with organoids from control littermate mice, intestinal organoids isolated from H19-/- mice had increased numbers of lysozyme- and mucin 2-positive cells and showed increased tolerance to LPS. Conversely, ectopic overexpression of H19 in cultured intestinal epithelial cells prevented rapamycin-induced autophagy and abolished the rapamycin-induced protection of the epithelial barrier against LPS. CONCLUSIONS: In investigations of mice, human tissues, primary organoids, and intestinal epithelial cells, we found that increased H19 inhibited the function of Paneth and goblet cells and suppressed autophagy, thus potentially contributing to barrier dysfunction in intestinal pathologies.


Subject(s)
Autophagy/genetics , Goblet Cells/pathology , Paneth Cells/pathology , RNA, Long Noncoding/metabolism , Sepsis/pathology , Animals , Autophagy/immunology , Caco-2 Cells , Disease Models, Animal , Female , Goblet Cells/immunology , Humans , Intestine, Small/cytology , Intestine, Small/immunology , Intestine, Small/pathology , Male , Mice , Mice, Knockout , Organoids , Paneth Cells/immunology , Permeability , RNA, Long Noncoding/genetics , Sepsis/immunology
7.
J Refract Surg ; 34(4): 236-243, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29634838

ABSTRACT

PURPOSE: To analyze the optical performance and the effect of halos on modulation transfer function (MTF) of an extended depth-of-focus (EDOF) intraocular lens (IOL) compared to low add bifocal, high add bifocal, and monofocal IOLs. METHODS: The optical bench system was set up to evaluate the MTF and point spread function images for analyzing halos around the focused image with four different IOLs (TECNIS ZCB00, ZXR00, ZKB00, and ZMB00; Abbott Medical Optics, Inc., Santa Ana, CA). They were measured within a defocus range from +0.50 to -4.00 diopters (D). RESULTS: The EDOF IOL showed good and stable image quality from far to intermediate distance. The near visual performance was limited with the EDOF IOL compared to low add and high add power bifocal IOLs. Monofocal and EDOF IOLs focused light more tightly at far distance and showed higher intensity at the core compared to low and high add bifocal IOLs. The peak core intensity and the relative halo intensity of the EDOF IOL were comparable to those obtained from the monofocal IOL. A negative significant correlation was found in all IOLs between the relative halo intensity and MTF within a defocus diopter range from 0.00 to -3.00 D (P < .05). CONCLUSIONS: The EDOF IOL had distance acuity optical quality and halo effect similar to monofocal IOLs but worse near acuity compared to conventional bifocal IOLs. [J Refract Surg. 2018;34(4):236-243.].


Subject(s)
Depth Perception/physiology , Lenses, Intraocular , Models, Theoretical , Optics and Photonics , Contrast Sensitivity/physiology , Humans , Prosthesis Design , Vision, Ocular/physiology , Visual Acuity/physiology
8.
Tumour Biol ; 39(3): 1010428317695918, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28349826

ABSTRACT

Mortalin is a member of the heat shock protein 70 family, which is involved in multiple cellular processes and may play key roles in promoting carcinogenesis. This study attempted to identify the clinical consequences of Mortalin overexpression and its roles in the prognostic evaluation of non-small cell lung cancer. A total of 120 non-small cell lung cancer samples paired with the adjacent non-tumor tissue samples and 10 normal lung tissues were selected for immunohistochemical staining for Mortalin. The localization of Mortalin was detected in A549 non-small cell lung cancer cells using immunofluorescence staining. The correlations between Mortalin overexpression and the clinical features of non-small cell lung cancers were evaluated using the chi-square test. The survival analysis was calculated via the Kaplan-Meier method and the Cox proportional hazard models. Our studies suggested that Mortalin exhibited a primarily cytoplasmic staining pattern in the non-small cell lung cancers. The rate of strongly positive Mortalin expression was higher in the non-small cell lung cancer samples than in the adjacent non-tumor samples or in normal lung tissues. Mortalin overexpression was significantly correlated with high histological grades, advanced stages, lymph node metastases, and lower disease-free survival and overall survival rates of the patients with non-small cell lung cancer. The survival analysis demonstrated that Mortalin overexpression was a significant independent prognostic factor in non-small cell lung cancer, especially for patients with early stage of non-small cell lung cancer. In conclusion, Mortalin is up-regulated in non-small cell lung cancer, and it may be a potential biomarker of prognostic evaluation and a molecular therapeutic target for patients with early stage of non-small cell lung cancer.


Subject(s)
Biomarkers, Tumor/biosynthesis , Carcinoma, Non-Small-Cell Lung/genetics , HSP70 Heat-Shock Proteins/biosynthesis , Prognosis , A549 Cells , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Disease-Free Survival , Female , Gene Expression Regulation, Neoplastic , HSP70 Heat-Shock Proteins/genetics , Humans , Kaplan-Meier Estimate , Lymphatic Metastasis , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...