Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 33
Filter
Add more filters










Publication year range
1.
Cell Mol Life Sci ; 80(9): 254, 2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37589754

ABSTRACT

Exposure to chronic psychological stress (CPS) is an intractable risk factor for inflammatory and metabolic diseases. Lysosomal cysteinyl cathepsins play an important role in human pathobiology. Given that cathepsin S (CTSS) is upregulated in the stressed vascular and adipose tissues, we investigated whether CTSS participates in chronic stress-induced skeletal muscle mass loss and dysfunction, with a special focus on muscle protein metabolic imbalance and apoptosis. Eight-week-old male wildtype (CTSS+/+) and CTSS-knockout (CTSS-/-) mice were randomly assigned to non-stress and variable-stress groups. CTSS+/+ stressed mice showed significant losses of muscle mass, dysfunction, and fiber area, plus significant mitochondrial damage. In this setting, stressed muscle in CTSS+/+ mice presented harmful alterations in the levels of insulin receptor substrate 2 protein content (IRS-2), phospho-phosphatidylinositol 3-kinase, phospho-protein kinase B, and phospho-mammalian target of rapamycin, forkhead box-1, muscle RING-finger protein-1 protein, mitochondrial biogenesis-related peroxisome proliferator-activated receptor-γ coactivator-α, and apoptosis-related B-cell lymphoma 2 and cleaved caspase-3; these alterations were prevented by CTSS deletion. Pharmacological CTSS inhibition mimics its genetic deficiency-mediated muscle benefits. In C2C12 cells, CTSS silencing prevented stressed serum- and oxidative stress-induced IRS-2 protein reduction, loss of the myotube myosin heavy chain content, and apoptosis accompanied by a rectification of investigated molecular harmful changes; these changes were accelerated by CTSS overexpression. These findings demonstrated that CTSS plays a role in IRS-2-related protein anabolism and catabolism and cell apoptosis in stress-induced muscle wasting, suggesting a novel therapeutic strategy for the control of chronic stress-related muscle disease in mice under our experimental conditions by regulating CTSS activity.


Subject(s)
Cathepsins , Muscular Atrophy , Stress, Physiological , Animals , Male , Mice , Adipose Tissue , Muscles , Muscular Atrophy/genetics
2.
FASEB J ; 37(8): e23086, 2023 08.
Article in English | MEDLINE | ID: mdl-37428652

ABSTRACT

Cathepsin S (CTSS) is a widely expressed cysteinyl protease that has garnered attention because of its enzymatic and non-enzymatic functions under inflammatory and metabolic pathological conditions. Here, we examined whether CTSS participates in stress-related skeletal muscle mass loss and dysfunction, focusing on protein metabolic imbalance. Eight-week-old male wildtype (CTSS+/+ ) and CTSS-knockout (CTSS-/- ) mice were randomly assigned to non-stress and variable-stress groups for 2 weeks, and then processed for morphological and biochemical studies. Compared with non-stressed mice, stressed CTSS+/+ mice showed significant losses of muscle mass, muscle function, and muscle fiber area. In this setting, the stress-induced harmful changes in the levels of oxidative stress-related (gp91phox and p22phox ,), inflammation-related (SDF-1, CXCR4, IL-1ß, TNF-α, MCP-1, ICAM-1, and VCAM-1), mitochondrial biogenesis-related (PPAR-γ and PGC-1α) genes and/or proteins and protein metabolism-related (p-PI3K, p-Akt, p-FoxO3α, MuRF-1, and MAFbx1) proteins; and these alterations were rectified by CTSS deletion. Metabolomic analysis revealed that stressed CTSS-/- mice exhibited a significant improvement in the levels of glutamine metabolism pathway products. Thus, these findings indicated that CTSS can control chronic stress-related skeletal muscle atrophy and dysfunction by modulating protein metabolic imbalance, and thus CTSS was suggested to be a promising new therapeutic target for chronic stress-related muscular diseases.


Subject(s)
Muscular Diseases , Oxidative Stress , Mice , Male , Animals , Muscle Fibers, Skeletal/metabolism , Cathepsins/metabolism , Muscular Diseases/metabolism
3.
Arterioscler Thromb Vasc Biol ; 43(7): e238-e253, 2023 07.
Article in English | MEDLINE | ID: mdl-37128920

ABSTRACT

BACKGROUND: Exposure to chronic psychological stress is a risk factor for metabolic cardiovascular disease. Given the important role of lysosomal CTSS (cathepsin S) in human pathobiology, we examined the role of CTSS in stress-related thrombosis, focusing on inflammation, oxidative stress, and apoptosis. METHODS: Six-week-old wild-type mice (CTSS+/+) and CTSS-deficient mice (CTSS-/-) randomly assigned to nonstress and 2-week immobilization stress groups underwent iron chloride3 (FeCl3)-induced carotid thrombosis surgery for morphological and biochemical studies. RESULTS: On day 14 poststress/surgery, stress had increased the lengths and weights of thrombi in the CTSS+/+ mice, plus harmful changes in the levels of PAI-1 (plasminogen activation inhibitor-1), ADAMTS13 (a disintegrin and metalloproteinase with thrombospondin type 13 motifs), and vWF (von Willebrand factor) and arterial tissue CTSS expression. Compared to the nonstressed CTSS+/+ mice, the stressed CTSS-/- mice had decreased levels of PAI-1, vWF, TNF (tumor necrosis factor)-α, interleukin-1ß, toll-like receptor-4, cleaved-caspase 3, cytochrome c, p16INK4A, gp91phox, p22phox, ICAM-1 (intercellular adhesion molecule-1), MCP-1 (monocyte chemoattractant protein-1), MyD88 (myeloid differentiation primary response 88), and MMP (matrix metalloproteinase)-2/-9 and increased levels of ADAMTS13, SOD (superoxide dismutase)-1/-2, eNOS (endothelial NO synthase), p-Akt (phospho-protein kinase B), Bcl-2 (B-cell lymphoma-2), p-GSK3α/ß (phospho-glycogen synthase kinases alpha and beta), and p-Erk1/2 (phospho-extracellular signal-regulated kinase 1 and 2) mRNAs and/or proteins. CTSS deletion also reduced the arterial thrombus area and endothelial loss. A pharmacological inhibition of CTSS exerted a vasculoprotective action. In vitro, CTSS silencing and overexpression, respectively, reduced and increased the stressed serum and oxidative stress-induced apoptosis of human umbilical vein endothelial cells, and they altered apoptosis-related proteins. CONCLUSIONS: CTSS inhibition appeared to improve the stress-related thrombosis in mice that underwent FeCl3-induction surgery, possibly by reducing vascular inflammation, oxidative stress, and apoptosis. CTSS could thus become a candidate therapeutic target for chronic psychological stress-related thrombotic events in metabolic cardiovascular disease.


Subject(s)
Cardiovascular Diseases , Carotid Artery Thrombosis , Thrombosis , Mice , Humans , Animals , von Willebrand Factor/metabolism , Plasminogen Activator Inhibitor 1/genetics , Thrombosis/etiology , Thrombosis/metabolism , Human Umbilical Vein Endothelial Cells/metabolism , Inflammation/pathology
4.
Cell Biosci ; 13(1): 91, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37202785

ABSTRACT

Cysteinyl cathepsins (CTSs) are widely known to have a proteolysis function that mediates recycling of unwanted proteins in endosomes and lysosomes, and investigation of CTSs has greatly improved with advances in live-imaging techniques both in vivo and in vitro, leading to three key findings. (1) CTSs are relocated from the lysosomes to other cellular spaces (i.e., cytosol, nucleus, nuclear membrane, plasma membrane, and extracellular milieu). (2) In addition to acidic cellular compartments, CTSs also exert biological activity in neutral environments. (3) CTSs also exert multiple nontraditional functions in, for example, extracellular matrix metabolism, cell signaling transduction, protein processing/trafficking, and cellular events. Various stimuli regulate the expression and activities of CTSs in vivo and vitro-e.g., inflammatory cytokines, oxidative stress, neurohormones, and growth factors. Accumulating evidence has confirmed the participation of CTSs in vascular diseases characterized by atherosclerosis, plaque rupture, thrombosis, calcification, aneurysm, restenosis/in-stent-restenosis, and neovasel formation. Circulating and tissue CTSs are promising as biomarkers and as a diagnostic imaging tool in patients with atherosclerosis-based cardiovascular disease (ACVD), and pharmacological interventions with their specific and non-specific inhibitors, and cardiovascular drugs might have potential for the therapeutic targeting of CTSs in animals. This review focuses on the update findings on CTS biology and the involvement of CTSs in the initiation and progression of ACVD and discusses the potential use of CTSs as biomarkers and small-molecule targets to prevent deleterious nontraditional functions in ACVD.

5.
J Cachexia Sarcopenia Muscle ; 13(6): 3078-3090, 2022 12.
Article in English | MEDLINE | ID: mdl-36058630

ABSTRACT

BACKGROUND: Young bone marrow transplantation (YBMT) has been shown to stimulate vascular regeneration in pathological conditions, including ageing. Here, we investigated the benefits and mechanisms of the preventive effects of YBMT on loss of muscle mass and function in a senescence-associated mouse prone 10 (SAMP10) model, with a special focus on the role of growth differentiation factor 11 (GDF-11). METHODS: Nine-week-old male SAMP10 mice were randomly assigned to a non-YBMT group (n = 6) and a YBMT group (n = 7) that received the bone marrow of 8-week-old C57BL/6 mice. RESULTS: Compared to the non-YBMT mice, the YBMT mice showed the following significant increases (all P < 0.05 in 6-7 mice): endurance capacity (>61.3%); grip strength (>37.9%), percentage of slow myosin heavy chain fibres (>14.9-15.9%). The YBMT also increased the amounts of proteins or mRNAs for insulin receptor substrate 1, p-Akt, p-extracellular signal-regulated protein kinase1/2, p-mammalian target of rapamycin, Bcl-2, peroxisom proliferator-activated receptor-γ coactivator (PGC-1α), plus cytochrome c oxidase IV and the numbers of proliferating cells (n = 5-7, P < 0.05) and CD34+/integrin-α7+ muscle stem cells (n = 5-6, P < 0.05). The YMBT significantly decreased the levels of gp91phox, caspase-9 proteins and apoptotic cells (n = 5-7, P < 0.05) in both muscles; these beneficial changes were diminished by the blocking of GDF-11 (n = 5-6, P < 0.05). An administration of mouse recombinant GDF-11 improved the YBMT-mediated muscle benefits (n = 5-6, P < 0.05). Cell therapy with young bone marrow from green fluorescent protein (GFP) transgenic mice exhibited GFP+ myofibres in aged muscle tissues. CONCLUSIONS: These findings suggest that YBMT can prevent muscle wasting and dysfunction by mitigating apoptosis and proliferation via a modulation of GDF-11 signalling and mitochondrial dysfunction in SAMP10 mice.


Subject(s)
Bone Marrow Transplantation , Muscles , Mice , Animals , Male , Mice, Inbred C57BL , Muscles/metabolism , Muscular Atrophy/pathology , Aging/physiology , Disease Models, Animal , Mice, Transgenic , Mammals
7.
Stem Cell Res Ther ; 13(1): 226, 2022 06 03.
Article in English | MEDLINE | ID: mdl-35659361

ABSTRACT

BACKGROUND: Skeletal muscle mass and function losses in aging individuals are associated with quality of life deterioration and disability. Mesenchymal stromal cells exert immunomodulatory and anti-inflammatory effects and could yield beneficial effects in aging-related degenerative disease. METHODS AND RESULTS: We investigated the efficacy of umbilical cord-derived mesenchymal stromal cells (UC-MSCs) on sarcopenia-related skeletal muscle atrophy and dysfunction in senescence-accelerated mouse prone 10 (SAMP10) mice. We randomly assigned 24-week-old male SAMP10 mice to a UC-MSC treatment group and control group. At 12 weeks post-injection, the UC-MSC treatment had ameliorated sarcopenia-related muscle changes in performance, morphological structures, and mitochondria biogenesis, and it enhanced the amounts of proteins or mRNAs for myosin heavy chain, phospho-AMP-activated protein kinase, phospho-mammalian target of rapamycin, phospho-extracellular signal-regulated kinase1/2, peroxisome proliferator-activated receptor-γ coactivator, GLUT-4, COX-IV, and hepatocyte growth factor in both gastrocnemius and soleus muscles, and it reduced the levels of proteins or mRNAs for cathepsin K, cleaved caspase-3/-8, tumor necrosis factor-α, monocyte chemoattractant protein-1, and gp91phox mRNAs. The UC-MSC treatment retarded mitochondria damage, cell apoptosis, and macrophage infiltrations, and it enhanced desmin/laminin expression and proliferating and CD34+/Integrin α7+ cells in both types of skeletal muscle of the SAMP10 mice. In vitro, we observed increased levels of HGF, PAX-7, and MoyD mRNAs at the 4th passage of UC-MSCs. CONCLUSIONS: Our results suggest that UC-MSCs can improve sarcopenia-related skeletal muscle atrophy and dysfunction via anti-apoptosis, anti-inflammatory, and mitochondrial biogenesis mechanisms that might be mediated by an AMPK-PGC1-α axis, indicating that UC-MSCs may provide a promising treatment for sarcopenia/muscle diseases.


Subject(s)
Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Sarcopenia , Aging , Animals , Apoptosis , Humans , Male , Mammals , Mesenchymal Stem Cells/metabolism , Mice , Muscle, Skeletal/pathology , Muscular Atrophy/pathology , Muscular Atrophy/therapy , Quality of Life , Sarcopenia/metabolism , Sarcopenia/pathology , Sarcopenia/therapy , Umbilical Cord/metabolism
8.
Hypertension ; 79(8): 1713-1723, 2022 08.
Article in English | MEDLINE | ID: mdl-35726642

ABSTRACT

BACKGROUND: Chronic psychological stress is a risk factor for kidney disease, including kidney dysfunction and hypertension. Lysosomal CatK (cathepsin K) participates in various human pathobiologies. We investigated the role of CatK in kidney remodeling and hypertension in response to 5/6 nephrectomy injury in mice with or without chronic stress. METHODS: Male 7-week-old WT (wild type; CatK+/+) and CatK-deficient (CatK-/-) mice that were or were not subjected to chronic stress underwent 5/6 nephrectomy. At 8 weeks post-stress/surgery, the stress was observed to have accelerated injury-induced glomerulosclerosis, proteinuria, and blood pressure elevation. RESULTS: Compared with the nonstressed mice, the stressed mice showed increased levels of TLR (Toll-like receptor)-2/4, p22phox, gp91phox, CatK, MMP (matrix metalloproteinase)-2/9, collagen type I and III genes, PPAR-γ (peroxisome proliferator-activated receptor-gamma), NLRP-3 (NOD-like receptor thermal protein domain associated protein 3), p21, p16, and cleaved caspase-8 proteins, podocyte foot process effacement, macrophage accumulation, apoptosis, and decreased levels of Bcl-2 (B cell lymphoma 2) and Sirt1, as well as decreased glomerular desmin expression in the kidneys. These harmful changes were retarded by the genetic or pharmacological inhibition of CatK. Consistently, CatK inhibition ameliorated 5/6 nephrectomy-related kidney injury and dysfunction. In mesangial cells, CatK silencing or overexpression, respectively, reduced or increased the PPAR-γ and cleaved caspase-8 protein levels, providing evidence and a mechanistic explanation of CatK's involvement in PPAR-γ/caspase-8-mediated cell apoptosis in response to superoxide and stressed serum. CONCLUSIONS: These results demonstrate that CatK plays an essential role in kidney remodeling and hypertension in response to 5/6 nephrectomy or stress, possibly via a reduction of glomerular inflammation, apoptosis, and fibrosis, suggesting a novel therapeutic strategy for controlling kidney injury in mice under chronic psychological stress conditions.


Subject(s)
Cathepsin K/metabolism , Kidney Diseases , Potassium Deficiency , Stress, Physiological , Animals , Caspase 8/metabolism , Cathepsin K/genetics , Humans , Hypertension/metabolism , Kidney/metabolism , Kidney Diseases/etiology , Kidney Diseases/prevention & control , Male , Mice , Nephrectomy , Peroxisome Proliferator-Activated Receptors/metabolism
9.
Stem Cells Int ; 2021: 9202990, 2021.
Article in English | MEDLINE | ID: mdl-34950212

ABSTRACT

BACKGROUND: We recently demonstrated that proliferin-1 (PLF-1) functions as an apoptotic cell-derived growth factor and plays an important role in vascular pathobiology. We therefore investigated its role in muscle regeneration in response to cardiotoxin injury. METHODS AND RESULTS: To determine the effects of PLF-1 on muscle regeneration, we used a CTX-induced skeletal muscle injury model in 9-week-old male mice that were administered with the recombinant PLF-1 (rPLF-1) or neutralizing PLF-1 antibody. The injured muscles exhibited increased levels of PLF-1 gene expression in a time-dependent manner. On day 14 after injury, rPLF-1 supplementation ameliorated CTX-induced alterations in muscle fiber size, interstitial fibrosis, muscle regeneration capacity, and muscle performance. On day 3 postinjury, rPLF-1 increased the levels of proteins or genes for p-Akt, p-mTOR, p-GSK3α/ß, p-Erk1/2, p-p38MAPK, interleukin-10, Pax7, MyoD, and Cyclin B1, and it increased the numbers of CD34+/integrin-α7+ muscle stem cells and proliferating cells in the muscles and/or bone marrow of CTX mice. An enzyme-linked immunosorbent assay revealed that rPLF-1 suppressed the levels of plasma tumor necrosis factor-α and interleukin-1ß in CTX mice. PLF-1 blocking accelerated CTX-related muscle damage and dysfunction. In C2C12 myoblasts, rPLF-1 increased the levels of proteins for p-Akt, p-mTOR, p-GSK3α/ß, p-Erk1/2, and p-p38MAPK as well as cellular functions; and these effects were diminished by the depletion of PLF-1 or silencing of its mannose-6-phosphate receptor. CONCLUSIONS: These findings demonstrated that PLF-1 can improve skeletal muscle repair in response to injury, possibly via the modulation of inflammation and proliferation and regeneration, suggesting a novel therapeutic strategy for the management of skeletal muscle diseases.

10.
Front Cell Dev Biol ; 9: 687868, 2021.
Article in English | MEDLINE | ID: mdl-34368136

ABSTRACT

OBJECTIVES: Exposure to chronic psychosocial stress is a risk factor for atherosclerotic cardiovascular diseases. Given that the 3-hydroxy-3-methylglutaryl-coenzyme reductase inhibitor statins prevent atherogenesis, we evaluated whether pitavastatin prevents chronic stress- and high fat diet-induced vascular senescence and atherogenesis in apolipoprotein E-deficient (ApoE -/-) mice, with a special focus on glucagon-like peptide-1 (GLP-1)/adiponectin (APN) axis. METHODS AND RESULTS: 6-week-old ApoE -/- mice loaded a high-fat diet were randomly assigned into non-stress (n = 12) and stress (n = 13) groups for 12 weeks. Non-stress control mice were left undisturbed. Chronic stress accelerated high fat diet-induce arterial senescence and atherosclerotic plaque growth. The chronic stress lowered the levels of circulating GLP-1 as well as adipose and plasma APN. As compared with the stress alone mice, the pitavastatin-treated mice had reduced macrophage infiltration, elastin fragments, and increased plaque collagen volume, and lowered levels of osteopontin, toll-like receptor-2/-4, macrophage chemoattractant protein-1, C-X-C chemokine receptor-4, p47 phox , p47 phox , gp91 phox , cathepsins S, p16, and p21, mRNAs and/or proteins. Pitavastatin increased plasma GLP-1 and APN levels and suppressed matrix metalloproteinase-2/-9 gene expressions and activities in the aortas. Finally, the protective effect of pitavastatin was abrogated by APN blocking. CONCLUSION: These findings suggested that the pitavastatin-mediated pleiotropic vasculoprotective effects are likely attributable, at least in part, to the elevation of GLP-1 and APN levels and the inhibition of diet-induced plaque inflammation, oxidative stress, and proteolysis in ApoE -/- mice received chronic stress conditions.

11.
Int Heart J ; 62(3): 470-478, 2021 May 29.
Article in English | MEDLINE | ID: mdl-33994495

ABSTRACT

Exposure to psychosocial stress is a risk factor for cardiovascular disease, including vascular atherosclerosis-based cardiovascular disease (ACVD). Dipeptidyl peptidase-4 (DPP-4) is a complex enzyme that acts as a membrane-anchored cell surface exopeptidase. DPP-4 is upregulated in metabolic and inflammatory cardiovascular disorders. DPP-4 exhibits many physiological and pharmacological functions by regulating its extremely abundant substrates, such as glucagon-like peptide-1 (GLP-1). Over the last 10 years, emerging data have demonstrated unexpected roles of DPP-4 in extracellular and intracellular signaling, immune activation, inflammation, oxidative stress production, cell apoptosis, insulin resistance, and lipid metabolism. This mini-review focuses on recent novel findings in this field, highlighting a DPP-4-mediated regulation of GLP-1-dependent and -independent signaling pathways as a potential therapeutic molecular target in treatments of chronic psychological stress-related ACVD in humans and animals.


Subject(s)
Atherosclerosis/enzymology , Dipeptidyl Peptidase 4/metabolism , Stress, Psychological/enzymology , Animals , Atherosclerosis/etiology , Biomarkers/blood , Clinical Trials as Topic , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Glucagon-Like Peptide 1/blood , Humans , Molecular Targeted Therapy , Stress, Psychological/blood , Stress, Psychological/complications
12.
J Hypertens ; 38(10): 1878-1889, 2020 10.
Article in English | MEDLINE | ID: mdl-32890260

ABSTRACT

: Hypertension is a growing health concern worldwide. Established hypertension is a causative factor of heart failure, which is characterized by increased vascular resistance and intractable uncontrolled blood pressure. Hypertension and heart failure have multiple causes and complex pathophysiology but cellular immunity is thought to contribute to the development of both. Recent studies showed that T cells play critical roles in hypertension and heart failure in humans and animals, with various stimuli leading to the formation of effector T cells that infiltrate the cardiovascular wall. Monocytes/macrophages also accumulate in the cardiovascular wall. Various cytokines (e.g. interleukin-6, interleukin-17, interleukin-10, tumor necrosis factor-α, and interferon-γ) released from immune cells of various subtypes promote vascular senescence and elastic laminal degradation as well as cardiac fibrosis and/or hypertrophy, leading to cardiovascular structural alterations and dysfunction. Recent laboratory evidence has defined a link between inflammation and the immune system in initiation and progression of hypertension and heart failure. Moreover, cross-talk among natural killer cells, adaptive immune cells (T cells and B cells), and innate immune cells (i.e. monocytes, macrophages, neutrophils, and dendritic cells) contributes to end-cardiovasculature damage and dysfunction in hypertension and heart failure. Clinical and experimental studies on the diagnostic potential of T-cell subsets revealed that blood regulatory T cells, CD4 cells, CD8 T cells, and the ratio of CD4 to CD8 T cells show promise as biomarkers of hypertension and heart failure. Therapeutic interventions to suppress activation of these cells may prove beneficial in reducing end-organ damage and preventing consequences of cardiovascular failure, including hypertension of heart failure.


Subject(s)
Heart Failure , Hypertension , Immune System Diseases , Animals , Cytokines , Heart Failure/complications , Heart Failure/immunology , Humans , Hypertension/complications , Hypertension/immunology , Immune System Diseases/complications , Immune System Diseases/immunology , Mice , T-Lymphocyte Subsets
14.
J Hypertens ; 38(8): 1514-1524, 2020 08.
Article in English | MEDLINE | ID: mdl-32205563

ABSTRACT

BACKGROUND: Chronic psychological stress (CPS) is linked to cardiovascular disease initiation and progression. Given that cysteinyl cathepsin K (CatK) participates in vascular remodeling and atherosclerotic plaque growth in several animal models, we investigated the role of CatK in the development of experimental neointimal hyperplasia in response to chronic stress. METHODS AND RESULTS: At first, male wild-type (CatK) mice that underwent carotid ligation injury were subjected to chronic immobilization stress. On postoperative and stressed day 14, the results demonstrated that stress accelerated injury-induced neointima hyperplasia. On day 4, stressed mice showed following: increased levels of monocyte chemoattractant protein-1, gp91phox, toll-like receptor-2 (TLR2), TLR4, and CatK mRNAs or/and proteins, oxidative stress production, aorta-derived smooth muscle cell (SMC) migration, and macrophage infiltration as well as targeted intracellular proliferating-related molecules. Stressed mice showed increased matrix metalloproteinase-2 (MMP-2) and MMP-9 mRNA expressions and activities and elastin disruption in the injured carotid arteries. Second, CatK and CatK deficiency (CatK) mice received ligation injury and stress to explore the role of CatK. The stress-induced harmful changes were prevented by CatK. Finally, CatK mice that had undergone ligation surgery were randomly assigned to one of two groups and administered vehicle or CatK inhibitor for 14 days. Pharmacological CatK intervention produced a vascular benefit. CONCLUSION: These data indicate that CatK deletion protects against the development of experimental neointimal hyperplasia via the attenuation of inflammatory overaction, oxidative stress production, and VSMC proliferation, suggesting that CatK is a novel therapeutic target for the management of CPS-related restenosis after intravascular intervention therapies.


Subject(s)
Cathepsin K , Neointima/metabolism , Stress, Psychological/metabolism , Tunica Intima/metabolism , Animals , Cathepsin K/deficiency , Cathepsin K/metabolism , Disease Models, Animal , Hyperplasia , Mice
15.
J Am Heart Assoc ; 8(24): e005886, 2019 12 17.
Article in English | MEDLINE | ID: mdl-31838975

ABSTRACT

Background Although apoptosis and cell proliferation have been extensively investigated in atherosclerosis and restenosis postinjury, the communication between these 2 cellular events has not been evaluated. Here, we report an inextricable communicative link between apoptosis and smooth muscle cell proliferation in the promotion of vascular remodeling postinjury. Methods and Results Cathepsin K-mediated caspase-8 maturation is a key initial step for oxidative stress-induced smooth muscle cell apoptosis. Apoptotic cells generate a potential growth-stimulating signal to facilitate cellular mass changes in response to injury. One downstream mediator that cathepsin K regulates is PLF-1 (proliferin-1), which can potently stimulate growth of surviving neighboring smooth muscle cells through activation of PI3K/Akt/p38MAPK (phosphatidylinositol 3-kinase/protein kinase B/p38 mitogen-activated protein kinase)-dependent and -independent mTOR (mammalian target of rapamycin) signaling cascades. We observed that cathepsin K deficiency substantially mitigated neointimal hyperplasia by reduction of Toll-like receptor-2/caspase-8-mediated PLF-1 expression. Interestingly, PLF-1 blocking, with its neutralizing antibody, suppressed neointima formation and remodeling in response to injury in wild-type mice. Contrarily, administration of recombinant mouse PLF-1 accelerated injury-induced vascular actions. Conclusions This is the first study detailing PLF-1 as a communicator between apoptosis and proliferation during injury-related vascular remodeling and neointimal hyperplasia. These data suggested that apoptosis-driven expression of PLF-1 is thus a novel target for treatment of apoptosis-based hyperproliferative disorders.


Subject(s)
Apoptosis/physiology , Cell Proliferation/physiology , Myocytes, Smooth Muscle/physiology , Prolactin/physiology , Tunica Intima/pathology , Animals , Hyperplasia , Male , Mice , Rats , Vascular Remodeling/physiology
16.
Chem Biol Interact ; 314: 108842, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31586451

ABSTRACT

BACKGROUND AND AIMS: Chronic psychosocial stress is a risk factor for cardiovascular disease. In view of the important role of dipeptidyl peptidase-4 (DPP-4) in human pathophysiology, we studied the role of DPP-4 in stress-related vascular aging in mice, focusing on oxidative stress and the inflammatory response. METHODS AND RESULTS: Male mice were randomly divided into a non-stress group and an immobilization stress group treated for 2 weeks. Chronic stress accelerates aortic senescence and increases plasma DPP-4 levels. Stress increased the levels of gp91phox, p22phox, p47phox, p67phox, p53, p27, p21, p16INK4A, vascular cell adhesion molecule-1, intracellular adhesion molecule-1, monocyte chemoattractant protein-1, matrix metalloproteinase-2 (MMP-2), MMP-9, cathepsin S (Cat S), and Cat K mRNAs and/or protein in the aorta of the stressed mice and decreased their levels of endothelial nitric oxide synthase and SirTuin1 (SirT1). DPP-4 inhibitors can improve stress-induced targeting molecules and morphological changes. In vitro, the inhibition of DPP-4 also alleviated the changes in the oxidative and inflammatory molecules in response to hydrogen peroxide in human umbilical vein endothelial cells. CONCLUSIONS: DPP-4 inhibition can improve vascular aging in stressed mice, possibly by improving oxidative stress production and vascular inflammation. Our results suggest that DPP-4 may become a new therapeutic target for chronic stress-related vascular aging in metabolic cardiovascular diseases.


Subject(s)
Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Oxidative Stress/drug effects , Animals , Aorta/metabolism , Aorta/pathology , Dipeptidyl Peptidase 4/blood , Dipeptidyl Peptidase 4/chemistry , Down-Regulation/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Hydrogen Peroxide/metabolism , Inflammation/pathology , Inflammation/prevention & control , Male , Mice , Mice, Inbred BALB C , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase/metabolism , Pyrimidines/pharmacology , Sirtuin 1/metabolism , Stress, Physiological
17.
Circ J ; 83(12): 2537-2546, 2019 11 25.
Article in English | MEDLINE | ID: mdl-31645525

ABSTRACT

BACKGROUND: Given that cathepsin S (CatS) gained attention due to its enzymatic and non-enzymatic functions in signaling, the role of CatS in ischemia-induced angiogenesis of aged mice was explored.Methods and Results:To study the role of CatS in the decline in aging-related vascular regeneration capacity, a hindlimb ischemia model was applied to aged wild-type (CatS+/+) and CatS-deficient (CatS-/-) mice. CatS-/-mice exhibited impaired blood flow recovery and capillary formation and increased levels of p-insulin receptor substrate-1, Wnt5a, and SC35 proteins and decreased levels of phospho-endothelial nitric oxide synthase (p-eNOS), p-mTOR, p-Akt, p-ERK1/2, p-glycogen synthase kinase-3α/ß, and galatin-3 proteins, as well as decreased macrophage infiltration and matrix metalloproteinase-2/-9 activities in the ischemic muscles. In vitro, CatS knockdown altered the levels of these targeted essential molecules for angiogenesis. Together, the results suggested that CatS-/-leads to defective endothelial cell functions and that CatS-/-is associated with decreased circulating endothelial progenitor cell (EPC)-like CD31+/c-Kit+cells. This notion was reinforced by the study finding that pharmacological CatS inhibition led to a declined angiogenic capacity accompanied by increased Wnt5a and SC35 levels and decreased eNOS/Akt-ERK1/2 signaling in response to ischemia. CONCLUSIONS: These findings demonstrated that the impairment of ischemia-induced neovascularization in aged CatS-/-mice is due, at least in part, to the attenuation of endothelial cell/EPC functions and/or mobilization associated with Wnt5a/SC35 activation in advanced age.


Subject(s)
Cathepsins/metabolism , Endothelial Progenitor Cells/enzymology , Ischemia/enzymology , Muscle, Skeletal/blood supply , Serine-Arginine Splicing Factors/metabolism , Wnt-5a Protein/metabolism , Age Factors , Animals , Cathepsins/deficiency , Cathepsins/genetics , Cells, Cultured , Disease Models, Animal , Extracellular Signal-Regulated MAP Kinases/metabolism , Hindlimb , Human Umbilical Vein Endothelial Cells/enzymology , Humans , Ischemia/physiopathology , Male , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Physiologic , Nitric Oxide Synthase Type III/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
18.
J Am Heart Assoc ; 8(14): e011994, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31296090

ABSTRACT

Background Exposure to chronic psychosocial stress is a risk factor for atherosclerosis-based cardiovascular disease. We previously demonstrated the increased expressions of cathepsin S (CatS) in atherosclerotic lesions. Whether CatS participates directly in stress-related neointimal hyperplasia has been unknown. Methods and Results Male wild-type and CatS-deficient mice that underwent carotid ligation injury were subjected to chronic immobilization stress for morphological and biochemical studies at specific times. On day 14 after stress/surgery, stress enhanced the neointima formation. At the early time points, the stressed mice had increased plaque elastin disruption, cell proliferation, macrophage accumulation, mRNA and/or protein levels of vascular cell adhesion molecule-1, angiotensin II type 1 receptor, monocyte chemoattractant protein-1, gp91phox, stromal cell-derived factor-1, C-X-C chemokine receptor-4, toll-like receptor-2, toll-like receptor-4, SC 35, galectin-3, and CatS as well as targeted intracellular proliferating-related molecules (mammalian target of rapamycin, phosphorylated protein kinase B, and p-glycogen synthase kinase-3α/ß). Stress also increased the plaque matrix metalloproteinase-9 and matrix metalloproteinase-2 mRNA expressions and activities and aorta-derived smooth muscle cell migration and proliferation. The genetic or pharmacological inhibition of CatS by its specific inhibitor (Z- FL -COCHO) ameliorated the stressed arterial targeted molecular and morphological changes and stressed aorta-derived smooth muscle cell migration. Both the genetic and pharmacological interventions had no effect on increased blood pressure in stressed mice. Conclusions These results demonstrate an essential role of CatS in chronic stress-related neointimal hyperplasia in response to injury, possibly via the reduction of toll-like receptor-2/toll-like receptor-4-mediated inflammation, immune action, and smooth muscle cell proliferation, suggesting that CatS will be a novel therapeutic target for stress-related atherosclerosis-based cardiovascular disease.


Subject(s)
Carotid Arteries/metabolism , Cathepsins/genetics , Cell Proliferation/genetics , Neointima/genetics , Plaque, Atherosclerotic/genetics , Stress, Psychological/genetics , Animals , Carotid Arteries/drug effects , Carotid Arteries/pathology , Carotid Artery Injuries/genetics , Carotid Artery Injuries/metabolism , Carotid Artery Injuries/pathology , Cathepsins/antagonists & inhibitors , Cell Movement/genetics , Cell Proliferation/drug effects , Elastin/metabolism , Hyperplasia , Ligation , Macrophages , Matrix Metalloproteinases/genetics , Matrix Metalloproteinases/metabolism , Mice , Mice, Knockout , Myocytes, Smooth Muscle , Neointima/pathology , Plaque, Atherosclerotic/metabolism , Plaque, Atherosclerotic/pathology , RNA, Messenger/metabolism , Restraint, Physical , Stress, Psychological/pathology
19.
Int J Cardiol ; 267: 150-155, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-29861101

ABSTRACT

BACKGROUND: The mechanism by which angiogenesis declines with aging remains largely unknown. Given that the plasma levels of adiponectin (APN) are decreased in the presence of ischemic cardiovascular disease, we explore the possible mechanisms by which APN/adiponectin receptor1 (AdipoR1) axis inactivation contributes to the decline in vascular regeneration capacity in elderly animals. METHODS AND RESULTS: To study aging-related changes in the APN/AdipoR1 axis and its impact on ischemia-induced angiogenesis, a hindlimb ischemia model was applied to young and aged mice. Aging impaired ischemia-induced blood flow recovery. An ELISA showed that the aged mice had decreased plasma APN levels. Immunostaining showed lesser capillary formation in the aged mice. The aged ischemic muscles had decreased levels of AdipoR1, peroxisome proliferator activated receptor-γ (PPAR-γ), PPAR-γ co-activator 1α (PGC-1α), phospho-AMP-activated protein kinase α (p-AMPK-α), and B cell lymphoma-2 (Bcl-2) and increased levels of cleaved caspase-8 (C-caspase-8) and gp91phox/p22phox genes or/and proteins, nicotinamide adenine dinucleotide phosphate oxidase activity, superoxide production, and matrix metalloproteinase-2/-9 activity as well as increased numbers of infiltrated macrophages and leucocytes. In in vitro experiments, aged endothelial cells had negative changes in the levels of PPAR-γ, PGC-1α, p-AMPK-α, Bcl-2, and C-caspase-8 proteins in response to oxidative stress. Genetic interventions targeted toward APN and AdipoR1 negatively affected the targeted angiogenic protein levels in aged muscles and angiogenic actions and/or aged endothelial events. CONCLUSION: These findings indicate that aging can reduce angiogenesis in response to hypoxia via an impaired APN-AdipoR1-dependent mechanism that may be mediated by PPAR-γ/PGC-1α signaling inactivation in advanced age.


Subject(s)
Adiponectin/metabolism , Aging/metabolism , Neovascularization, Pathologic/metabolism , Receptors, Adiponectin/metabolism , Animals , Disease Models, Animal , Hypoxia/metabolism , Ischemia/complications , Mice , Neovascularization, Pathologic/etiology , PPAR gamma/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...