Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
Molecules ; 25(19)2020 Sep 24.
Article in English | MEDLINE | ID: mdl-32987784

ABSTRACT

Ginseng is a traditional medicinal herb commonly consumed world-wide owing to its unique family of saponins called ginsenosides. The absorption and bioavailability of ginsenosides mainly depend on an individual's gastrointestinal bioconversion abilities. There is a need to improve ginseng processing to predictably increase the pharmacologically active of ginsenosides. Various types of ginseng, such as fresh, white, steamed, acid-processed, and fermented ginsengs, are available. The various ginseng processing methods produce a range ginsenoside compositions with diverse pharmacological properties. This review is intended to summarize the properties of the ginsenosides found in different Panax species as well as the different processing methods. The sugar moiety attached to the C-3, C-6, or C-20 deglycosylated to produce minor ginsenosides, such as Rb1, Rb2, Rc, Rd→Rg3, F2, Rh2; Re, Rf→Rg1, Rg2, F1, Rh1. The malonyl-Rb1, Rb2, Rc, and Rd were demalonylated into ginsenoside Rb1, Rb2, Rc, and Rd by dehydration. Dehydration also produces minor ginsenosides such as Rg3→Rk1, Rg5, Rz1; Rh2→Rk2, Rh3; Rh1→Rh4, Rk3; Rg2→Rg6, F4; Rs3→Rs4, Rs5; Rf→Rg9, Rg10. Acetylation of several ginsenosides may generate acetylated ginsenosides Rg5, Rk1, Rh4, Rk3, Rs4, Rs5, Rs6, and Rs7. Acid processing methods produces Rh1→Rk3, Rh4; Rh2→Rk1, Rg5; Rg3→Rk2, Rh3; Re, Rf, Rg2→F1, Rh1, Rf2, Rf3, Rg6, F4, Rg9. Alkaline produces Rh16, Rh3, Rh1, F4, Rk1, ginsenoslaloside-I, 20(S)-ginsenoside-Rh1-60-acetate, 20(R)-ginsenoside Rh19, zingibroside-R1 through hydrolysis, hydration addition reactions, and dehydration. Moreover, biological processing of ginseng generates the minor ginsenosides of Rg3, F2, Rh2, CK, Rh1, Mc, compound O, compound Y through hydrolysis reactions, and synthetic ginsenosides Rd12 and Ia are produced through glycosylation. This review with respect to the properties of particular ginsenosides could serve to increase the utilization of ginseng in agricultural products, food, dietary supplements, health supplements, and medicines, and may also spur future development of novel highly functional ginseng products through a combination of various processing methods.


Subject(s)
Ginsenosides/chemistry , Ginsenosides/isolation & purification , Panax/chemistry
2.
Zhongguo Zhong Yao Za Zhi ; 44(2): 274-277, 2019 Jan.
Article in Chinese | MEDLINE | ID: mdl-30989945

ABSTRACT

To obtain biocontrol fungus for Alternaria panax,the antifungal effects of one strain of endophytic fungi isolated from leaves of healthy ginseng were screened and evaluated by using dual-culture method,and the taxonomic assignment of the screened strain was identified based on the morphological characters and ITS sequence analysis. The results of dual-culture showed that one of the endophytes marked as FS-01 had good antifungal effects and the inhibitory rates of FS-01 strain to A. panax was( 60. 21±0. 12) %.The hyphae junction of the both strains,A. panax dissolved,broke and winded,while the hyphae of FS-01 strain remained normal. The inhibitory rates of non-sterilized FS-01 strain fermentation liqud was( 13. 94±0. 21) %. Strain FS-01 identified as Chaetomium globosum.


Subject(s)
Alternaria/pathogenicity , Antibiosis , Chaetomium/isolation & purification , Endophytes/isolation & purification , Panax/microbiology , Plant Diseases/prevention & control , Chaetomium/classification , Fungicides, Industrial
SELECTION OF CITATIONS
SEARCH DETAIL
...