Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Cell Mol Biol Lett ; 29(1): 71, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38745155

ABSTRACT

BACKGROUND: Genetic abnormalities in the FGFR signalling occur in 40% of breast cancer (BCa) patients resistant to anti-ER therapy, which emphasizes the potential of FGFR-targeting strategies. Recent findings indicate that not only mutated FGFR is a driver of tumour progression but co-mutational landscapes and other markers should be also investigated. Autophagy has been recognized as one of the major mechanisms underlying the role of tumour microenvironment in promotion of cancer cell survival, and resistance to anti-ER drugs. The selective autophagy receptor p62/SQSTM1 promotes Nrf-2 activation by Keap1/Nrf-2 complex dissociation. Herein, we have analysed whether the negative effect of FGFR2 on BCa cell response to anti-ER treatment involves the autophagy process and/or p62/Keap1/Nrf-2 axis. METHODS: The activity of autophagy in ER-positive MCF7 and T47D BCa cell lines was determined by analysis of expression level of autophagy markers (p62 and LC3B) and monitoring of autophagosomes' maturation. Western blot, qPCR and proximity ligation assay were used to determine the Keap1/Nrf-2 interaction and Nrf-2 activation. Analysis of 3D cell growth in Matrigel® was used to assess BCa cell response to applied treatments. In silico gene expression analysis was performed to determine FGFR2/Nrf-2 prognostic value. RESULTS: We have found that FGFR2 signalling induced autophagy in AMPKα/ULK1-dependent manner. FGFR2 activity promoted dissociation of Keap1/Nrf-2 complex and activation of Nrf-2. Both, FGFR2-dependent autophagy and activation of Nrf-2 were found to counteract the effect of anti-ER drugs on BCa cell growth. Moreover, in silico analysis showed that high expression of NFE2L2 (gene encoding Nrf-2) combined with high FGFR2 expression was associated with poor relapse-free survival (RFS) of ER+ BCa patients. CONCLUSIONS: This study revealed the unknown role of FGFR2 signalling in activation of autophagy and regulation of the p62/Keap1/Nrf-2 interdependence, which has a negative impact on the response of ER+ BCa cells to anti-ER therapies. The data from in silico analyses suggest that expression of Nrf-2 could act as a marker indicating potential benefits of implementation of anti-FGFR therapy in patients with ER+ BCa, in particular, when used in combination with anti-ER drugs.


Subject(s)
Autophagy , Breast Neoplasms , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Receptor, Fibroblast Growth Factor, Type 2 , Humans , Autophagy/drug effects , NF-E2-Related Factor 2/metabolism , NF-E2-Related Factor 2/genetics , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Receptor, Fibroblast Growth Factor, Type 2/genetics , Female , Kelch-Like ECH-Associated Protein 1/metabolism , Kelch-Like ECH-Associated Protein 1/genetics , Cell Line, Tumor , MCF-7 Cells , Signal Transduction/drug effects , Sequestosome-1 Protein/metabolism , Sequestosome-1 Protein/genetics
2.
Br J Cancer ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38627607

ABSTRACT

Breast cancer (BCa) is a complex and heterogeneous disease, with different intrinsic molecular subtypes that have distinct clinical outcomes and responses to therapy. Although intrinsic subtyping provides guidance for treatment decisions, it is now widely recognised that, in some cases, the switch of the BCa intrinsic subtype (which embodies cellular plasticity), may be responsible for therapy failure and disease progression. Aberrant FGFR4 signalling has been implicated in various cancers, including BCa, where it had been shown to be associated with aggressive subtypes, such as HER2-enriched BCa, and poor prognosis. More importantly, FGFR4 is also emerging as a potential driver of BCa intrinsic subtype switching, and an essential promoter of brain metastases, particularly in the HER2-positive BCa. Although the available data are still limited, the findings may have far-reaching clinical implications. Here, we provide an updated summary of the existing both pre- and clinical studies of the role of FGFR4 in BCa, with a special focus on its contribution to subtype switching during metastatic spread and/or induced by therapy. We also discuss a potential clinical benefit of targeting FGFR4 in the development of new treatment strategies.

3.
Mol Oncol ; 16(15): 2823-2842, 2022 08.
Article in English | MEDLINE | ID: mdl-35726195

ABSTRACT

We have recently demonstrated that fibroblast growth factor receptor 2 (FGFR2)-mediated signalling alters progesterone receptor (PR) activity and response of oestrogen receptor α (ER)-positive (ER+) breast cancer (BCa) cell lines to anti-ER agents. Little is known about whether the crosstalk between ER and PR, shown to be modulated by the hormonal background, might also be affected by FGFR2. Here, PR-dependent behaviour of ER+ BCa cells was studied in the presence of oestrogen (E2) and progesterone (P4) and/or FGF7. In vitro analyses showed that FGF7/FGFR2 signalling: (a) abolished the effect of P4 on E2-promoted 3D cell growth and response to tamoxifen; (b) regulated ER and PR expression and activity; (c) increased formation of ER-PR complexes; and (d) reversed P4-triggered deregulation of ER-dependent genes. Analysis of clinical data demonstrated that the prognostic value of FGFR2 varied between patients with different menopausal status; that is, high expression of FGFR2 was significantly associated with longer progression-free survival (PFS) in postmenopausal patients, whereas there was no significant association in premenopausal patients. FGFR2 was found to positively correlate with the expression of JunB proto-oncogene, AP-1 transcription factor subunit (JUNB), an ER-dependent gene, only in premenopausal patients. Molecular analyses revealed that the presence of JunB was a prerequisite for FGFR2-mediated abrogation of P4-induced inhibition of cell growth. Our results demonstrate for the first time that the FGF7/FGFR2-JunB axis abolishes the modulatory effects of PR on ER-associated biological functions in premenopausal ER+ BCa. This may provide foundations for a better selection of patients for FGFR-targeting therapeutic strategies.


Subject(s)
Breast Neoplasms , Fibroblast Growth Factor 7 , Receptor, Fibroblast Growth Factor, Type 2 , Transcription Factors , Breast Neoplasms/genetics , Female , Fibroblast Growth Factor 7/genetics , Fibroblast Growth Factor 7/metabolism , Humans , Progesterone/pharmacology , Progesterone/therapeutic use , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Receptors, Progesterone/metabolism , Signal Transduction , Tamoxifen/therapeutic use , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Biomedicines ; 10(5)2022 May 03.
Article in English | MEDLINE | ID: mdl-35625798

ABSTRACT

Increasing evidence suggests that the significance of the tumour immune microenvironment (TIME) for disease prognostication in invasive breast carcinoma is subtype-specific but equivalent studies in ductal carcinoma in situ (DCIS) are limited. The purpose of this paper is to review the existing data on immune cell composition in DCIS in relation to the clinicopathological features and molecular subtype of the lesion. We discuss the value of infiltration by various types of immune cells and the PD-1/PD-L1 axis as potential markers of the risk of recurrence. Analysis of the literature available in PubMed and Medline databases overwhelmingly supports an association between densities of infiltrating immune cells, traits of immune exhaustion, the foci of microinvasion, and overexpression of HER2. Moreover, in several studies, the density of immune infiltration was found to be predictive of local recurrence as either in situ or invasive cancer in HER2-positive or ER-negative DCIS. In light of the recently reported first randomized DCIS trial, relating recurrence risk with overexpression of HER2, we also include a closing paragraph compiling the latest mechanistic data on a functional link between HER2 and the density/composition of TIME in relation to its potential value in the prognostication of the risk of recurrence.

5.
Diagnostics (Basel) ; 10(12)2020 Dec 07.
Article in English | MEDLINE | ID: mdl-33297384

ABSTRACT

We present here an assessment of a 'real-life' value of automated machine learning algorithm (AI) for examination of immunohistochemistry for fibroblast growth factor receptor-2 (FGFR2) in breast cancer (BC). Expression of FGFR2 in BC (n = 315) measured using a certified 3DHistech CaseViewer/QuantCenter software 2.3.0. was compared to the manual pathologic assessment in digital slides (PA). Results revealed: (i) substantial interrater agreement between AI and PA for dichotomized evaluation (Cohen's kappa = 0.61); (ii) strong correlation between AI and PA H-scores (Spearman r = 0.85, p < 0.001); (iii) a small constant error and a significant proportional error (Passing-Bablok regression y = 0.51 × X + 29.9, p < 0.001); (iv) discrepancies in H-score in cases of extreme (strongest/weakest) or heterogeneous FGFR2 expression and poor tissue quality. The time of AI was significantly longer (568 h) than that of the pathologist (32 h). This study shows that the described commercial machine learning algorithm can reliably execute a routine pathologic assessment, however, in some instances, human expertise is essential.

6.
Cancers (Basel) ; 12(9)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971804

ABSTRACT

Interaction between fibroblast growth factor receptor 2 (FGFR2) and estrogen/progesterone receptors (ER/PR) affects resistance to anti-ER therapies, however the prognostic value of FGFR2 in breast cancer (BCa) remains largely unexplored. We have recently showed in vitro that FGFR2-mediated signaling alters PR activity and response to anti-ER treatment. Herein, prognostic significance of FGFR2 in BCa was evaluated in relation to both ER/PR protein status and a molecular signature designed to reflect PR transcriptional activity. FGFR2 was examined in 353 BCa cases using immunohistochemistry and Nanostring-based RNA quantification. FGFR2 expression was higher in ER+PR+ and ER+PR- compared to ER-PR- cases (p < 0.001). Low FGFR2 was associated with higher grade (p < 0.001), higher Ki67 proliferation index (p < 0.001), and worse overall and disease-free survival (HR = 2.34 (95% CI: 1.26-4.34), p = 0.007 and HR = 2.22 (95% CI: 1.25-3.93), p = 0.006, respectively). The poor prognostic value of low FGFR2 was apparent in ER+PR+, but not in ER+PR- patients, and it did not depend on the expression level of PR-dependent genes. Despite the functional link between FGFR2 and ER/PR revealed by preclinical studies, the data showed a link between FGFR2 expression and poor prognosis in BCa patients.

7.
Neoplasia ; 22(11): 576-589, 2020 11.
Article in English | MEDLINE | ID: mdl-32980776

ABSTRACT

There are data to suggest that some ductal carcinoma in situ (DCIS) may evolve through an evolutionary bottleneck, where minor clones susceptible to the imposed selective pressure drive disease progression. Here, we tested the hypothesis that an impact of the inflammatory environment on DCIS evolution is HER2-dependent, conferring proliferative dominance of HER2-negative cells. In tissue samples, density of tumour-infiltrating immune cells (TIICs) was associated only with high tumour nuclear grade, but in 9% of predominantly HER2-negative cases, the presence of tumoral foci ('hot-spots') of basal-like cells with HIF1-α activity adjacent to the areas of dense stromal infiltration was noted. Results of in vitro analyses further demonstrated that IL-1ß and TNF-α as well as macrophage-conditioned medium triggered phosphorylation of NF-κB and subsequent upregulation of COX2 and HIF1-α, exclusively in HER2-negative cells. Treatment with both IL-1ß and TNF-α resulted in growth stimulation and inhibition of HER2-negative and HER2-positive cells, respectively. Moreover, ectopic overexpression of HIF1-α rescued HER2-positive cells from the negative effect of IL-1ß and TNF-α on cell growth. Our data provide novel insight into the molecular basis of HER2-dependent proliferation of DCIS cells and indicate the NF-κB/COX2 → HIF1-α signalling axis as a dominant mechanism of DCIS evolution induced by inflammatory microenvironment. Presented findings also highlight the clinical significance of heterogeneity of DCIS tumours and suggest that HIF1-α might be considered as a predictive marker of disease progression.


Subject(s)
Breast Neoplasms/etiology , Breast Neoplasms/metabolism , Carcinoma, Intraductal, Noninfiltrating/etiology , Carcinoma, Intraductal, Noninfiltrating/metabolism , Cyclooxygenase 2/metabolism , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , NF-kappa B/metabolism , Biomarkers , Breast Neoplasms/pathology , Carcinoma, Intraductal, Noninfiltrating/pathology , Cell Line, Tumor , Cytokines/metabolism , Epithelial Cells/metabolism , Female , Gene Expression Regulation, Neoplastic , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Immunohistochemistry , Inflammation Mediators , Neoplasm Grading , Neoplasm Staging , Receptor, ErbB-2/genetics , Receptor, ErbB-2/metabolism , Signal Transduction , Tumor Microenvironment , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology
8.
Contemp Oncol (Pozn) ; 24(4): 258-262, 2020.
Article in English | MEDLINE | ID: mdl-33531874

ABSTRACT

Pulmonary tumour embolism is a rare condition without specific symptoms or pathognomonic features. Pulmonary tumour embolism can occur as the first manifestation of cancer, but because of diagnostic difficulties, it is often wrongly recognised as a more common cardiopulmonary disease. We present a case of a 46-year-old Caucasian male with no prior malignancy diagnosis, admitted because of progressing dyspnoea and cough. Based on radiological and clinical presentations, sarcoidosis, silicosis and lymphangitic carcinomatosis were considered in the differential diagnosis. Histopathological analysis of lung biopsy revealed that multiple emboli of atypical epithelial cells found in the pulmonary vessels were of gastrointestinal origin. Further pathological examination of the gastric biopsy led to the final diagnosis of the signet-ring cells gastric adenocarcinoma. The patient was referred for chemotherapy. After a short-term partial remission, he died within two months after the final diagnosis. The presented case illustrates challenges posed by the diagnostic process of pulmonary tumour embolism.

9.
Contemp Oncol (Pozn) ; 23(2): 121-125, 2019.
Article in English | MEDLINE | ID: mdl-31316296

ABSTRACT

Ossifying fasciitis is a very rare disease of reactive character; however, it can mimic malignant lesions, especially osteosarcoma. We report a case of a 30-year-old woman, who experienced a rapidly growing painful lesion of the left knee joint, preceded by a trauma. The tumor was resected, and the histopathological image suggested a malignant lesion with features of an osteosarcoma. A detailed correlation with a clinicopathological and radiological analysis led to the final diagnosis of ossifying fasciitis at an extraordinary site of patellar retinaculum. Our case shows that the close similarity between ossifying fasciitis and osteosarcoma may be challenging.

10.
J Exp Clin Cancer Res ; 38(1): 230, 2019 May 29.
Article in English | MEDLINE | ID: mdl-31142340

ABSTRACT

Stromal stimuli mediated by growth factor receptors, leading to ligand-independent activation of steroid hormone receptors, have long been implicated in development of breast cancer resistance to endocrine therapy. Mutations in fibroblast growth factor receptor (FGFR) genes have been associated with a higher incidence and progression of breast cancer. Increasing evidence suggests that FGFR-mediated interaction between luminal invasive ductal breast carcinoma (IDC) and its microenvironment contributes to the progression to hormone-independence. Therapeutic strategies based on FGFR inhibitors hold promise for overcoming resistance to the ER-targeting treatment. A series of excellent reviews discuss a potential role of FGFR in development of IDC. Here, we provide a concise updated summary of existing literature on FGFR-mediated signalling with an emphasis on an interaction between FGFR and estrogen/progesterone receptors (ER/PR) in IDC. Focusing on the regulatory role of tumour microenvironment in the activity of steroid hormone receptors, we compile the available functional data on FGFRs-mediated signalling, as a fundamental mechanism of luminal IDC progression and failure of anti-ER treatment. We also highlight the translational value of the presented findings and summarize ongoing oncologic clinical trials investigating FGFRs inhibition in interventional studies in breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Fibroblast Growth Factors/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Receptors, Steroid/metabolism , Signal Transduction , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Biomarkers, Tumor , Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Cancer-Associated Fibroblasts/metabolism , Female , Humans , Molecular Targeted Therapy , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Tumor Microenvironment
11.
Transl Res ; 207: 44-55, 2019 05.
Article in English | MEDLINE | ID: mdl-30639369

ABSTRACT

CD151/Tspan24 (SFS-1, PETA3) is one of the best characterized members of the tetraspanin family, whose involvement in breast cancer (BCa) progression was demonstrated both in vitro and in vivo. We have recently reported that in ErbB2-overexpressing BCa cells grown in 3D laminin-rich extracellular matrix, CD151 regulated basal phosphorylation and homodimerization of ErbB2 and sensitized the cells to Herceptin (trastuzumab). Following from these data, we have here analyzed an involvement of CD151 in regulation of ErbB2/ErbB3 heterodimerization and its impact on cell response to Herceptin. CD151 was found to: (1) impair ErbB2/ErbB3 heterodimerization, (2) inhibit heregulin-dependent cell growth in 3D and signaling, and (3) counteract the protective effect of heregulin on Herceptin-mediated growth inhibition. Analysis of tissue samples demonstrated for the first time clinical significance of CD151 in patients with ErbB2-overexpressing BCa undergone trastuzumab-based therapy. Consistent with in vitro results, CD151 impact on disease outcome was ErbB3-dependent. In patients with ErbB3-negative tumors, CD151 significantly improved both overall survival (OS) (hazard ratio [HR] = 0.19, P = 0.034) and progression-free survival (PFS) (HR = 0.36, P = 0.043), while in ErbB3-positive cases it had no significant effect on patient survival (OS: HR = 3.33, P = 0.283; PFS: HR = 2.40, P = 0.208). These results support previous findings and show that CD151 acts as an important component of ErbB2 signaling axis in BCa cells, affecting their sensitivity to ErbB2-targeting therapy.


Subject(s)
Breast Neoplasms/metabolism , Protein Multimerization , Receptor, ErbB-2/metabolism , Receptor, ErbB-3/metabolism , Tetraspanin 24/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Disease-Free Survival , Female , Humans , Middle Aged , Neuregulin-1/pharmacology , Protein Multimerization/drug effects , Signal Transduction/drug effects , Trastuzumab/pharmacology
12.
J Cancer Res Clin Oncol ; 144(8): 1401-1411, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29923083

ABSTRACT

PURPOSE: Dysregulation of miRNA profile has been associated with a broad spectrum of cellular processes underlying progression of various human malignancies. Increasing evidence suggests that specific microRNA clusters might be of clinical utility, especially in triple-negative breast carcinoma (TNBC), devoid of both predictive markers and potential therapeutic targets. Here we provide a comprehensive review of the existing data on microRNAs in TNBC, their molecular targets, a putative role in invasive progression with a particular emphasis on the epithelial-to-mesenchymal transition (EMT) and acquisition of stem-cell properties (CSC), regarded both as prerequisites for metastasis, and significance for therapy. METHODS: PubMed and Medline databases were systematically searched for the relevant literature. 121 articles have been selected and thoroughly analysed. RESULTS: Several miRNAs associated with EMT/CSC and invasion were identified as significantly (1) upregulated: miR-10b, miR-21, miR-29, miR-9, miR-221/222, miR-373 or (2) downregulated: miR-145, miR-199a-5p, miR-200 family, miR-203, miR-205 in TNBC. Dysregulation of miR-10b, miR-21, miR-29, miR-145, miR-200 family, miR-203, miR-221/222 was reported of prognostic value in TNBC patients. CONCLUSION: Available data suggest that specific microRNA clusters might play an important role in biology of TNBC, understanding of which should assist disease prognostication and therapy.


Subject(s)
Gene Expression Regulation, Neoplastic , MicroRNAs/genetics , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , Disease Progression , Female , Humans
13.
Oncol Lett ; 15(2): 1817-1822, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29434878

ABSTRACT

Breast cancer (BCa) is the most common cancer affecting women worldwide. Overexpression of human epidermal growth factor receptor 2 (HER2) occurs in ~20-25% of invasive ductal breast carcinomas and is associated with the more aggressive phenotype. Herceptin, a humanized antibody against HER2, is a standard therapy in HER2-overexpressing cases. Approximately one-third of patients relapse despite treatment. Therefore numerous studies have investigated the molecular mechanisms associated with Herceptin resistance. An interaction between HER2 signalling and steroid hormone receptor signalling pathways has been previously investigated, but the effect of this relationship on Herceptin resistance has never been studied. The present study analysed an impact of the steroid hormone, progesterone (PG), on Herceptin-dependent cell growth inhibition. Results indicated that Herceptin-inhibited proliferation of breast cancer cell lines overexpressing HER2 (BT474 and MCF/HER2) in 3D culture is abolished by PG. Furthermore, results demonstrated that PG led to the activation of HER2/HER3-mediated signalling. Moreover, PG treatment induced a shift of Herceptin-dependent cell cycle arrest in G1 phase towards S and G2 phases with concomitant upregulation of cyclin-dependent kinase 2 (CDK2) and downregulation of CDK inhibitor p27Kip1. These results demonstrate for the first time PG involvement in the failure of Herceptin treatment in vitro. The present observations suggest that cross-talk between PG- and HRG/HER2-initiated signalling pathways may lead to the acquisition of resistance to Herceptin in patients with BCa.

14.
Neoplasia ; 19(10): 791-804, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28869838

ABSTRACT

Signaling mediated by growth factors receptors has long been suggested as one of the key factors responsible for failure of endocrine treatment in breast cancer (BCa). Herein we present that in the presence of tamoxifen, FGFs (Fibroblast Growth Factors) promote BCa cell growth with the strongest effect being produced by FGF7. FGFR2 was identified as a mediator of FGF7 action and the FGFR2-induced signaling was found to underlie cancer-associated fibroblasts-dependent resistance to tamoxifen. FGF7/FGFR2-triggered pathway was shown to induce ER phosphorylation, ubiquitination and subsequent ER proteasomal degradation which counteracted tamoxifen-promoted ER stabilization. We also identified activation of PI3K/AKT signaling targeting ER-Ser167 and regulation of Bcl-2 expression as a mediator of FGFR2-promoted resistance to tamoxifen. Analysis of tissue samples from patients with invasive ductal carcinoma revealed an inversed correlation between expression of FGFR2 and ER, thus supporting our in vitro data. These results unveil the complexity of ER regulation by FGFR2-mediated signaling likely to be associated with BCa resistance to endocrine therapy.


Subject(s)
Estrogen Receptor alpha/metabolism , Receptor, Fibroblast Growth Factor, Type 2/metabolism , Selective Estrogen Receptor Modulators/pharmacology , Signal Transduction/drug effects , Tamoxifen/pharmacology , Biomarkers, Tumor , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Fibroblast Growth Factors/metabolism , Fibroblasts/drug effects , Gene Expression , Gene Knockout Techniques , Humans , Neoplasm Grading , Neoplasm Metastasis , Neoplasm Staging , Proteolysis , Receptor, ErbB-2/metabolism , Receptor, Fibroblast Growth Factor, Type 2/genetics
15.
Oncotarget ; 7(52): 86011-86025, 2016 Dec 27.
Article in English | MEDLINE | ID: mdl-27852068

ABSTRACT

We have recently demonstrated that, fibroblast growth factor 2 (FGFR2), signalling via ribosomal S6 kinase 2 (RSK2), promotes progression of breast cancer (BCa). Loss of progesterone receptor (PR), whose activity in BCa cells can be stimulated by growth factor receptors (GFRs), is associated with poor patient outcome. Here we showed that FGF7/FGFR2 triggered phosphorylation of PR at Ser294, PR ubiquitination and subsequent receptor`s degradation via the 26S proteasome pathway in BCa cells. We further demonstrated that RSK2 mediated FGF7/FGFR2-induced PR downregulation. In addition, a strong synergistic effect of FGF7 and progesterone (Pg), reflected in the enhanced anchorage-independent growth and cell migration, was observed. Analysis of clinical material demonstrated that expression of PR inversely correlated with activated RSK (RSK-P) (p = 0.016). Patients with RSK-P(+)/PR(-) tumours had 3.629-fold higher risk of recurrence (p = 0.002), when compared with the rest of the cohort. Moreover, RSK-P(+)/PR(-) phenotype was shown as an independent prognostic factor (p = 0.006). These results indicate that the FGF7/FGFR2-RSK2 axis promotes PR turnover and activity, which may sensitize BCa cells to stromal stimuli and contribute to the progression toward steroid hormone negative BCa.


Subject(s)
Breast Neoplasms/metabolism , Fibroblast Growth Factor 7/physiology , Receptor, Fibroblast Growth Factor, Type 2/physiology , Receptors, Progesterone/metabolism , Signal Transduction/physiology , Breast Neoplasms/mortality , Cell Line, Tumor , Female , Humans , Proteasome Endopeptidase Complex/physiology , Ribosomal Protein S6 Kinases, 90-kDa/physiology
16.
Postepy Biochem ; 61(2): 198-206, 2015.
Article in Polish | MEDLINE | ID: mdl-26689013

ABSTRACT

Progesterone receptor (PR) and its specific ligand play a key role in development and physiology of mammary gland. The role of PR in initiation and progression of breast carcinoma (BCa) is unquestionable, although molecular mechanism of PR action is complex and not fully understood. It is known that increased risk of breast cancer is associated with progestin-based (synthetic ligands of progesterone) hormonal contraception or hormone replacement therapies. It is estimated that ER/PR-positive tumours represent approximately 50-70% of all BCa cases, and the loss of PR is associated with resistance to hormonal therapy and increased tumour invasiveness. In classical, genomic signalling pathway cytoplasmic PR, following ligand binding, translocates to the nucleus and regulates expression of genes with the PRE sequence. PR is also involved in a large number of alternative, non-genomic signalling cascades, e.g. PR is able to activate MAPK and PI3K/AKT pathways, which leads to regulation of gene expression. The cross-talk between PR and Growth Factors Receptors (GFR) results in progesterone-independent activation of PR as well as PR-regulated GFR expression and activation. Growth factors signalling promotes formation of a pool of hypersensitive PR responsive to even very low ligand concentration. Transcriptional activity of PR as well as its dynamic impact on processes such as cell migration and adhesion are crucial for BCa progression. Further studies of multifaceted mechanisms of PR action may contribute to new PR-targeting therapeutic strategies for breast cancer patients.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Receptors, Progesterone/metabolism , Signal Transduction , Breast Neoplasms/etiology , Breast Neoplasms/pathology , Carcinogenesis , Female , Humans , Neoplasm Invasiveness , Receptors, Progesterone/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...