Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Med Chem ; 66(15): 10849-10865, 2023 08 10.
Article in English | MEDLINE | ID: mdl-37527664

ABSTRACT

Jumonji-C domain-containing protein 5 (JMJD5) is a 2-oxoglutarate (2OG)-dependent oxygenase that plays important roles in development, circadian rhythm, and cancer through unclear mechanisms. JMJD5 has been reported to have activity as a histone protease, as an Nε-methyl lysine demethylase, and as an arginine residue hydroxylase. Small-molecule JMJD5-selective inhibitors will be useful for investigating its (patho)physiological roles. Following the observation that the broad-spectrum 2OG oxygenase inhibitor pyridine-2,4-dicarboxylic acid (2,4-PDCA) is a 2OG-competing JMJD5 inhibitor, we report that 5-aminoalkyl-substituted 2,4-PDCA derivatives are potent JMJD5 inhibitors manifesting selectivity for JMJD5 over other human 2OG oxygenases. Crystallographic analyses with five inhibitors imply induced fit binding and reveal that the 2,4-PDCA C5 substituent orients into the JMJD5 substrate-binding pocket. Cellular studies indicate that the lead compounds display similar phenotypes as reported for clinically observed JMJD5 variants, which have a reduced catalytic activity compared to wild-type JMJD5.


Subject(s)
Histones , Neoplasms , Humans , Circadian Rhythm , Pyridines/pharmacology , Oxygenases/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism
2.
J Clin Invest ; 133(7)2023 04 03.
Article in English | MEDLINE | ID: mdl-36795492

ABSTRACT

Although protein hydroxylation is a relatively poorly characterized posttranslational modification, it has received significant recent attention following seminal work uncovering its role in oxygen sensing and hypoxia biology. Although the fundamental importance of protein hydroxylases in biology is becoming clear, the biochemical targets and cellular functions often remain enigmatic. JMJD5 is a "JmjC-only" protein hydroxylase that is essential for murine embryonic development and viability. However, no germline variants in JmjC-only hydroxylases, including JMJD5, have yet been described that are associated with any human pathology. Here we demonstrate that biallelic germline JMJD5 pathogenic variants are deleterious to JMJD5 mRNA splicing, protein stability, and hydroxylase activity, resulting in a human developmental disorder characterized by severe failure to thrive, intellectual disability, and facial dysmorphism. We show that the underlying cellular phenotype is associated with increased DNA replication stress and that this is critically dependent on the protein hydroxylase activity of JMJD5. This work contributes to our growing understanding of the role and importance of protein hydroxylases in human development and disease.


Subject(s)
Histone Demethylases , Mixed Function Oxygenases , Humans , Animals , Mice , Histone Demethylases/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL
...