Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Cell Rep ; 43(4): 114013, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38551962

ABSTRACT

Sampling behaviors have sensory consequences that can hinder perceptual stability. In olfaction, sniffing affects early odor encoding, mimicking a sudden change in odor concentration. We examined how the inhalation speed affects the representation of odor concentration in the main olfactory cortex. Neurons combine the odor input with a global top-down signal preceding the sniff and a mechanosensory feedback generated by the air passage through the nose during inhalation. Still, the population representation of concentration is remarkably sniff invariant. This is because the mechanosensory and olfactory responses are uncorrelated within and across neurons. Thus, faster odor inhalation and an increase in concentration change the cortical activity pattern in distinct ways. This encoding strategy affords tolerance to potential concentration fluctuations caused by varying inhalation speeds. Since mechanosensory reafferences are widespread across sensory systems, the coding scheme described here may be a canonical strategy to mitigate the sensory ambiguities caused by movements.


Subject(s)
Odorants , Olfactory Cortex , Smell , Animals , Olfactory Cortex/physiology , Smell/physiology , Mechanotransduction, Cellular , Male , Mice , Mice, Inbred C57BL , Neurons/physiology , Neurons/metabolism
2.
Curr Opin Neurobiol ; 84: 102834, 2024 02.
Article in English | MEDLINE | ID: mdl-38154417

ABSTRACT

Recently, a confluence between trends in neuroscience and machine learning has brought a renewed focus on unsupervised learning, where sensory processing systems learn to exploit the statistical structure of their inputs in the absence of explicit training targets or rewards. Sophisticated experimental approaches have enabled the investigation of the influence of sensory experience on neural self-organization and its synaptic bases. Meanwhile, novel algorithms for unsupervised and self-supervised learning have become increasingly popular both as inspiration for theories of the brain, particularly for the function of intermediate visual cortical areas, and as building blocks of real-world learning machines. Here we review some of these recent developments, placing them in historical context and highlighting some research lines that promise exciting breakthroughs in the near future.


Subject(s)
Machine Learning , Unsupervised Machine Learning , Brain , Algorithms
3.
Nat Commun ; 14(1): 4817, 2023 08 09.
Article in English | MEDLINE | ID: mdl-37558677

ABSTRACT

Neurons throughout the sensory pathway adapt their responses depending on the statistical structure of the sensory environment. Contrast gain control is a form of adaptation in the auditory cortex, but it is unclear whether the dynamics of gain control reflect efficient adaptation, and whether they shape behavioral perception. Here, we trained mice to detect a target presented in background noise shortly after a change in the contrast of the background. The observed changes in cortical gain and behavioral detection followed the dynamics of a normative model of efficient contrast gain control; specifically, target detection and sensitivity improved slowly in low contrast, but degraded rapidly in high contrast. Auditory cortex was required for this task, and cortical responses were not only similarly affected by contrast but predicted variability in behavioral performance. Combined, our results demonstrate that dynamic gain adaptation supports efficient coding in auditory cortex and predicts the perception of sounds in noise.


Subject(s)
Auditory Cortex , Auditory Perception , Animals , Mice , Auditory Perception/physiology , Noise , Sound , Auditory Cortex/physiology , Adaptation, Physiological/physiology , Acoustic Stimulation
4.
Front Comput Neurosci ; 17: 1150300, 2023.
Article in English | MEDLINE | ID: mdl-37216064

ABSTRACT

Sensory systems appear to learn to transform incoming sensory information into perceptual representations, or "objects," that can inform and guide behavior with minimal explicit supervision. Here, we propose that the auditory system can achieve this goal by using time as a supervisor, i.e., by learning features of a stimulus that are temporally regular. We will show that this procedure generates a feature space sufficient to support fundamental computations of auditory perception. In detail, we consider the problem of discriminating between instances of a prototypical class of natural auditory objects, i.e., rhesus macaque vocalizations. We test discrimination in two ethologically relevant tasks: discrimination in a cluttered acoustic background and generalization to discriminate between novel exemplars. We show that an algorithm that learns these temporally regular features affords better or equivalent discrimination and generalization than conventional feature-selection algorithms, i.e., principal component analysis and independent component analysis. Our findings suggest that the slow temporal features of auditory stimuli may be sufficient for parsing auditory scenes and that the auditory brain could utilize these slowly changing temporal features.

5.
Nat Commun ; 14(1): 1920, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37024449

ABSTRACT

Fronto-striatal circuits have been implicated in cognitive control of behavioral output for social and appetitive rewards. The functional diversity of prefrontal cortical populations is strongly dependent on their synaptic targets, with control of motor output mediated by connectivity to dorsal striatum. Despite evidence for functional diversity along the anterior-posterior striatal axis, it is unclear how distinct fronto-striatal sub-circuits support value-based choice. Here we found segregated prefrontal populations defined by anterior/posterior dorsomedial striatal target. During a feedback-based 2-alternative choice task, single-photon imaging revealed circuit-specific representations of task-relevant information with prelimbic neurons targeting anterior DMS (PL::A-DMS) robustly modulated during choices and negative outcomes, while prelimbic neurons targeting posterior DMS (PL::P-DMS) encoded internal representations of value and positive outcomes contingent on prior choice. Consistent with this distributed coding, optogenetic inhibition of PL::A-DMS circuits strongly impacted choice monitoring and responses to negative outcomes while inhibition of PL::P-DMS impaired task engagement and strategies following positive outcomes. Together our data uncover PL populations engaged in distributed processing for value-based choice.


Subject(s)
Corpus Striatum , Neostriatum , Mice , Male , Animals , Corpus Striatum/physiology , Prefrontal Cortex/physiology , Inhibition, Psychological
6.
bioRxiv ; 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36712067

ABSTRACT

Occam's razor is the principle that, all else being equal, simpler explanations should be preferred over more complex ones. This principle is thought to play a role in human perception and decision-making, but the nature of our presumed preference for simplicity is not understood. Here we use preregistered behavioral experiments informed by formal theories of statistical model selection to show that, when faced with uncertain evidence, human subjects exhibit preferences for particular, theoretically grounded forms of simplicity of the alternative explanations. These forms of simplicity can be understood in terms of geometrical features of statistical models treated as manifolds in the space of the probability distributions, in particular their dimensionality, boundaries, volume, and curvature. The simplicity preferences driven by these features, which are also exhibited by artificial neural networks trained to optimize performance on comparable tasks, generally improve decision accuracy, because they minimize over-sensitivity to noisy observations (i.e., overfitting). However, unlike for artificial networks, for human subjects these preferences persist even when they are maladaptive with respect to the task training and instructions. Thus, these preferences are not simply transient optimizations for particular task conditions but rather a more general feature of human decision-making. Taken together, our results imply that principled notions of statistical model complexity have direct, quantitative relevance to human and machine decision-making and establish a new understanding of the computational foundations, and behavioral benefits, of our predilection for inferring simplicity in the latent properties of our complex world.

7.
Front Cell Neurosci ; 16: 1006703, 2022.
Article in English | MEDLINE | ID: mdl-36545653

ABSTRACT

Neural circuits in the periphery of the visual, auditory, and olfactory systems are believed to use limited resources efficiently to represent sensory information by adapting to the statistical structure of the natural environment. This "efficient coding" principle has been used to explain many aspects of early visual circuits including the distribution of photoreceptors, the mosaic geometry and center-surround structure of retinal receptive fields, the excess OFF pathways relative to ON pathways, saccade statistics, and the structure of simple cell receptive fields in V1. We know less about the extent to which such adaptations may occur in deeper areas of cortex beyond V1. We thus review recent developments showing that the perception of visual textures, which depends on processing in V2 and beyond in mammals, is adapted in rats and humans to the multi-point statistics of luminance in natural scenes. These results suggest that central circuits in the visual brain are adapted for seeing key aspects of natural scenes. We conclude by discussing how adaptation to natural temporal statistics may aid in learning and representing visual objects, and propose two challenges for the future: (1) explaining the distribution of shape sensitivity in the ventral visual stream from the statistics of object shape in natural images, and (2) explaining cell types of the vertebrate retina in terms of feature detectors that are adapted to the spatio-temporal structures of natural stimuli. We also discuss how new methods based on machine learning may complement the normative, principles-based approach to theoretical neuroscience.

8.
Elife ; 102021 12 07.
Article in English | MEDLINE | ID: mdl-34872633

ABSTRACT

Efficient processing of sensory data requires adapting the neuronal encoding strategy to the statistics of natural stimuli. Previously, in Hermundstad et al., 2014, we showed that local multipoint correlation patterns that are most variable in natural images are also the most perceptually salient for human observers, in a way that is compatible with the efficient coding principle. Understanding the neuronal mechanisms underlying such adaptation to image statistics will require performing invasive experiments that are impossible in humans. Therefore, it is important to understand whether a similar phenomenon can be detected in animal species that allow for powerful experimental manipulations, such as rodents. Here we selected four image statistics (from single- to four-point correlations) and trained four groups of rats to discriminate between white noise patterns and binary textures containing variable intensity levels of one of such statistics. We interpreted the resulting psychometric data with an ideal observer model, finding a sharp decrease in sensitivity from two- to four-point correlations and a further decrease from four- to three-point. This ranking fully reproduces the trend we previously observed in humans, thus extending a direct demonstration of efficient coding to a species where neuronal and developmental processes can be interrogated and causally manipulated.


Subject(s)
Discrimination, Psychological/physiology , Pattern Recognition, Visual/physiology , Visual Perception/physiology , Animals , Behavior, Animal/physiology , Conditioning, Operant , Male , Rats, Long-Evans
9.
Nat Commun ; 12(1): 4448, 2021 07 21.
Article in English | MEDLINE | ID: mdl-34290247

ABSTRACT

Cortical representations of brief, static stimuli become more invariant to identity-preserving transformations along the ventral stream. Likewise, increased invariance along the visual hierarchy should imply greater temporal persistence of temporally structured dynamic stimuli, possibly complemented by temporal broadening of neuronal receptive fields. However, such stimuli could engage adaptive and predictive processes, whose impact on neural coding dynamics is unknown. By probing the rat analog of the ventral stream with movies, we uncovered a hierarchy of temporal scales, with deeper areas encoding visual information more persistently. Furthermore, the impact of intrinsic dynamics on the stability of stimulus representations grew gradually along the hierarchy. A database of recordings from mouse showed similar trends, additionally revealing dependencies on the behavioral state. Overall, these findings show that visual representations become progressively more stable along rodent visual processing hierarchies, with an important contribution provided by intrinsic processing.


Subject(s)
Reaction Time/physiology , Visual Cortex/physiology , Visual Perception/physiology , Animals , Locomotion/physiology , Mice , Models, Neurological , Neurons/physiology , Photic Stimulation , Rats , Visual Pathways/physiology , Wakefulness/physiology
10.
J Open Res Softw ; 9(1)2021.
Article in English | MEDLINE | ID: mdl-37153754

ABSTRACT

We present embo, a Python package to analyze empirical data using the Information Bottleneck (IB) method and its variants, such as the Deterministic Information Bottleneck (DIB). Given two random variables X and Y, the IB finds the stochastic mapping M of X that encodes the most information about Y, subject to a constraint on the information that M is allowed to retain about X. Despite the popularity of the IB, an accessible implementation of the reference algorithm oriented towards ease of use on empirical data was missing. Embo is optimized for the common case of discrete, low-dimensional data. Embo is fast, provides a standard data-processing pipeline, offers a parallel implementation of key computational steps, and includes reasonable defaults for the method parameters. Embo is broadly applicable to different problem domains, as it can be employed with any dataset consisting in joint observations of two discrete variables. It is available from the Python Package Index (PyPI), Zenodo and GitLab.

11.
Neuron ; 103(3): 395-411.e5, 2019 08 07.
Article in English | MEDLINE | ID: mdl-31201122

ABSTRACT

Computational models are powerful tools for exploring the properties of complex biological systems. In neuroscience, data-driven models of neural circuits that span multiple scales are increasingly being used to understand brain function in health and disease. But their adoption and reuse has been limited by the specialist knowledge required to evaluate and use them. To address this, we have developed Open Source Brain, a platform for sharing, viewing, analyzing, and simulating standardized models from different brain regions and species. Model structure and parameters can be automatically visualized and their dynamical properties explored through browser-based simulations. Infrastructure and tools for collaborative interaction, development, and testing are also provided. We demonstrate how existing components can be reused by constructing new models of inhibition-stabilized cortical networks that match recent experimental results. These features of Open Source Brain improve the accessibility, transparency, and reproducibility of models and facilitate their reuse by the wider community.


Subject(s)
Brain/physiology , Computational Biology/standards , Computer Simulation , Models, Neurological , Neurons/physiology , Brain/cytology , Computational Biology/methods , Humans , Internet , Neural Networks, Computer , Online Systems
12.
Entropy (Basel) ; 21(1)2019 Jan 14.
Article in English | MEDLINE | ID: mdl-33266778

ABSTRACT

This is the Editorial article summarizing the scope and contents of the Special Issue, Information Theory in Neuroscience.

13.
Nature ; 548(7665): 92-96, 2017 08 03.
Article in English | MEDLINE | ID: mdl-28723889

ABSTRACT

The cortex represents information across widely varying timescales. For instance, sensory cortex encodes stimuli that fluctuate over few tens of milliseconds, whereas in association cortex behavioural choices can require the maintenance of information over seconds. However, it remains poorly understood whether diverse timescales result mostly from features intrinsic to individual neurons or from neuronal population activity. This question remains unanswered, because the timescales of coding in populations of neurons have not been studied extensively, and population codes have not been compared systematically across cortical regions. Here we show that population codes can be essential to achieve long coding timescales. Furthermore, we find that the properties of population codes differ between sensory and association cortices. We compared coding for sensory stimuli and behavioural choices in auditory cortex and posterior parietal cortex as mice performed a sound localization task. Auditory stimulus information was stronger in auditory cortex than in posterior parietal cortex, and both regions contained choice information. Although auditory cortex and posterior parietal cortex coded information by tiling in time neurons that were transiently informative for approximately 200 milliseconds, the areas had major differences in functional coupling between neurons, measured as activity correlations that could not be explained by task events. Coupling among posterior parietal cortex neurons was strong and extended over long time lags, whereas coupling among auditory cortex neurons was weak and short-lived. Stronger coupling in posterior parietal cortex led to a population code with long timescales and a representation of choice that remained consistent for approximately 1 second. In contrast, auditory cortex had a code with rapid fluctuations in stimulus and choice information over hundreds of milliseconds. Our results reveal that population codes differ across cortex and that coupling is a variable property of cortical populations that affects the timescale of information coding and the accuracy of behaviour.


Subject(s)
Cerebral Cortex/cytology , Cerebral Cortex/physiology , Decision Making , Animals , Auditory Cortex/cytology , Auditory Cortex/physiology , Male , Mice , Mice, Inbred C57BL , Neurons/metabolism , Parietal Lobe/cytology , Parietal Lobe/physiology , Time Factors
14.
Neuron ; 93(3): 491-507, 2017 Feb 08.
Article in English | MEDLINE | ID: mdl-28182905

ABSTRACT

The two basic processes underlying perceptual decisions-how neural responses encode stimuli, and how they inform behavioral choices-have mainly been studied separately. Thus, although many spatiotemporal features of neural population activity, or "neural codes," have been shown to carry sensory information, it is often unknown whether the brain uses these features for perception. To address this issue, we propose a new framework centered on redefining the neural code as the neural features that carry sensory information used by the animal to drive appropriate behavior; that is, the features that have an intersection between sensory and choice information. We show how this framework leads to a new statistical analysis of neural activity recorded during behavior that can identify such neural codes, and we discuss how to combine intersection-based analysis of neural recordings with intervention on neural activity to determine definitively whether specific neural activity features are involved in a task.


Subject(s)
Behavior, Animal/physiology , Brain/physiology , Optogenetics , Perception/physiology , Statistics as Topic , Animals , Choice Behavior
15.
Front Neuroinform ; 8: 79, 2014.
Article in English | MEDLINE | ID: mdl-25309419

ABSTRACT

Computational models are increasingly important for studying complex neurophysiological systems. As scientific tools, it is essential that such models can be reproduced and critically evaluated by a range of scientists. However, published models are currently implemented using a diverse set of modeling approaches, simulation tools, and computer languages making them inaccessible and difficult to reproduce. Models also typically contain concepts that are tightly linked to domain-specific simulators, or depend on knowledge that is described exclusively in text-based documentation. To address these issues we have developed a compact, hierarchical, XML-based language called LEMS (Low Entropy Model Specification), that can define the structure and dynamics of a wide range of biological models in a fully machine readable format. We describe how LEMS underpins the latest version of NeuroML and show that this framework can define models of ion channels, synapses, neurons and networks. Unit handling, often a source of error when reusing models, is built into the core of the language by specifying physical quantities in models in terms of the base dimensions. We show how LEMS, together with the open source Java and Python based libraries we have developed, facilitates the generation of scripts for multiple neuronal simulators and provides a route for simulator free code generation. We establish that LEMS can be used to define models from systems biology and map them to neuroscience-domain specific simulators, enabling models to be shared between these traditionally separate disciplines. LEMS and NeuroML 2 provide a new, comprehensive framework for defining computational models of neuronal and other biological systems in a machine readable format, making them more reproducible and increasing the transparency and accessibility of their underlying structure and properties.

16.
Neuron ; 83(4): 960-74, 2014 Aug 20.
Article in English | MEDLINE | ID: mdl-25123311

ABSTRACT

The synaptic connectivity within neuronal networks is thought to determine the information processing they perform, yet network structure-function relationships remain poorly understood. By combining quantitative anatomy of the cerebellar input layer and information theoretic analysis of network models, we investigated how synaptic connectivity affects information transmission and processing. Simplified binary models revealed that the synaptic connectivity within feedforward networks determines the trade-off between information transmission and sparse encoding. Networks with few synaptic connections per neuron and network-activity-dependent threshold were optimal for lossless sparse encoding over the widest range of input activities. Biologically detailed spiking network models with experimentally constrained synaptic conductances and inhibition confirmed our analytical predictions. Our results establish that the synaptic connectivity within the cerebellar input layer enables efficient lossless sparse encoding. Moreover, they provide a functional explanation for why granule cells have approximately four dendrites, a feature that has been evolutionarily conserved since the appearance of fish.


Subject(s)
Cerebellum/anatomy & histology , Cerebellum/physiology , Nerve Net/cytology , Nerve Net/physiology , Action Potentials/physiology , Animals , Cerebellum/cytology , Models, Anatomic , Nerve Net/anatomy & histology , Neurons/physiology , Rats , Synaptic Transmission/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...