Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sens ; 5(9): 2940-2949, 2020 09 25.
Article in English | MEDLINE | ID: mdl-32872770

ABSTRACT

Hysteresis is a problem in field-effect transistors (FETs) often caused by defects and charge traps inside a gate isolating (e.g., SiO2) layer. This work shows that graphene-based FETs also exhibit hysteresis due to water physisorbed on top of graphene determined by the relative humidity level, which naturally happens in biosensors and ambient operating sensors. The hysteresis effect is explained by trapping of electrons by physisorbed water, and it is shown that this hysteresis can be suppressed using short pulses of alternating gate voltages.


Subject(s)
Biosensing Techniques , Graphite , Silicon Dioxide , Transistors, Electronic , Water
2.
ACS Appl Mater Interfaces ; 10(14): 11987-11994, 2018 Apr 11.
Article in English | MEDLINE | ID: mdl-29557163

ABSTRACT

The article shows how the dynamic mapping of surface potential (SP) measured by Kelvin probe force microscopy (KPFM) in combination with calculation by a diffusion-like equation and the theory based on the Brunauer-Emmett-Teller (BET) model of water condensation and electron hopping can provide the information concerning the resistivity of low conductive surfaces and their water coverage. This is enabled by a study of charge transport between isolated and grounded graphene sheets on a silicon dioxide surface at different relative humidity (RH) with regard to the use of graphene in ambient electronic circuits and especially in sensors. In the experimental part, the chemical vapor-deposited graphene is precisely patterned by the mechanical atomic force microscopy (AFM) lithography and the charge transport is studied through a surface potential evolution measured by KPFM. In the computational part, a quantitative model based on solving the diffusion-like equation for the charge transport is used to fit the experimental data and thus to find the SiO2 surface resistivity ranging from 107 to 1010 Ω and exponentially decreasing with the RH increase. Such a behavior is explained using the formation of water layers predicted by the BET adsorption theory and electron-hopping theory that for the SiO2 surface patterned by AFM predicts a high water coverage even at low RHs.

SELECTION OF CITATIONS
SEARCH DETAIL
...