Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-37437837

ABSTRACT

Various aspects of folate and tetrahydrobiopterin (BH4) metabolism disturbances have been detected in patients with schizophrenia.Data were obtained that disturbances in the pterins (folates and BH4) metabolism can be associated with oxidative stress and inflammation, but has not yet been confirmed in clinical studies in schizophrenia. Within the framework of this study, a correlation and factor analysis of biochemical markersof pterin metabolism, inflammation and redox imbalance in patients with schizophrenia was performed in order to test the hypothesis of the single etiopathogenetic node, including the studied biochemical processes. Methods: 125 patients with schizophrenia and 95 healthy volunteers were randomly selected and evaluated with a biochemical examination of BH4, folate, B12, homocysteine, C-reactive protein, interleukin-6, reduced glutathione levels in the blood serum; activity of superoxide dismutase and catalase - in erythrocytes; malondialdehyde - in blood plasma. All patients underwent an examination using standardized psychopathology rating scales. Spearman rank coefficient (ρ) with Benjamini-Hochberg correction was used for the correlation analysis. The principal components analysis (PCA) was used as a factor analysis. Results: Significant correlations were found within groups of pterin metabolism, inflammatory markers and redox-imbalance, and also between separate inflammation, oxidative stress and markers of pterin metabolism. The performed factor analysis made it possible to distinguish two components: 1 - pterin metabolism, 2 - oxidativeinflammatory markers. Despite the weak statistical associations and, possibly, functional relationships between pterin metabolism and oxidative/inflammation markers, each of the components has its own clinical correlates and, probably, a separate contribution to the pathology of schizophrenia.


Subject(s)
Biochemical Phenomena , Schizophrenia , Humans , Oxidative Stress , Pterins/metabolism , Inflammation , Folic Acid , Biomarkers/metabolism
2.
J Psychiatr Res ; 153: 141-148, 2022 09.
Article in English | MEDLINE | ID: mdl-35816973

ABSTRACT

It was reported that the levels of tetrahydrobiopterin (BH4) are reduced in schizophrenia. However, mechanisms of BH4 deficiency in schizophrenia had not been studied precisely. OBJECTIVE: the search of the association between BH4 deficiency in schizophrenia and a range of biochemical and clinical parameters for the evaluation of the possible mechanisms of BH4 loss and its role in the development of the symptoms. METHODS: 93 patients with schizophrenia and 60 healthy volunteers were randomly selected and evaluated with a biochemical examination of BH4, folate, cobalamin (B12), homocysteine, C-reactive protein (CRP), reduced glutathione (GSH) levels in the blood serum.Patients underwent standardized psychopathological examination. RESULTS: In patients, the levels of BH4 and folate were lower (p = 0.001 and p = 0.054, respectively), and the levels of homocysteine were higher (p = 0.012) compared to the control group. BH4 levels directly moderately correlated with folate (ρ = 0.43; p = 0.0029) and B12 levels (ρ = 0.43; p = 0.0020) and inversely moderately correlated with homocysteine levels (ρ = -0.54; p = 0.00015) in patients. Cluster analysis identified schizophrenia biotype characterized by a deficiency of BH4, folate, B12, and hyperhomocysteinemia. The clinical characteristics of this biotype were not specific. CRP and GSH were higher in patients compared to controls, but their association with serum BH4 was not confirmed.


Subject(s)
Phenylketonurias , Schizophrenia , C-Reactive Protein , Case-Control Studies , Folic Acid , Homocysteine , Humans , Vitamin B 12
3.
Schizophr Res Treatment ; 2021: 7721760, 2021.
Article in English | MEDLINE | ID: mdl-34707909

ABSTRACT

A wide range of studies have demonstrated that hyperhomocysteinemia is associated with the risk of schizophrenia, but currently available assumptions about the direct involvement of homocysteine (Hcy) in the pathogenesis of schizophrenia are hypothetical. It is possible that in vivo Hcy is only a marker of folate metabolism disturbances (which are involved in methylation processes) and is not a pathogenetic factor per se. Only one study has been conducted in which associations of hyperhomocysteinemia with oxidative stress in schizophrenia (oxidative damage to protein and lipids) have been found, and it has been suggested that the oxidative stress may be induced by the elevated Hcy in schizophrenic patients. But the authors did not study the level of reduced glutathione (GSH), as well as possible causes of hyperhomocysteinemia-disturbances of folate metabolism. The aim of this work is to analyze the association of Hcy levels with the following: (1) redox markers in schizophrenia GSH, markers of oxidative damage of proteins and lipids, and the activity of antioxidant enzymes in blood serum; (2) with the level of folate and cobalamin (В12); and (3) with clinical features of schizophrenia measured using the Positive and Negative Syndrome Scale (PANSS). 50 patients with schizophrenia and 36 healthy volunteers, matched by sex and age, were examined. Hcy in patients is higher than in healthy subjects (p = 0.0041), and this may be due to the lower folate level in patients (p = 0.0072). In patients, negative correlation was found between the level of Hcy both with the level of folate (ρ = -0.38, p = 0.0063) and with the level of B12 (ρ = -0.36, p = 0.0082). At the same time, patients showed higher levels of oxidative modification of serum proteins (p = 0.00046) and lower catalase (CAT) activity (p = 0.014). However, Hcy is not associated with the studied markers of oxidative stress in patients. In the group of patients with an increased level of Hcy (>10 µmol/l, n = 42) compared with other patients (n = 8), some negative symptoms (PANSS) were statistically significantly more pronounced: difficulty in abstract thinking (N5, p = 0.019), lack of spontaneity and flow in conversation (N6, p = 0.022), stereotyped thinking (N7, p = 0.013), and motor retardation (G7, p = 0.050). Thus, in patients with schizophrenia, hyperhomocysteinemia caused by deficiency of folate and B12 is confirmed and can be considered a marker of disturbances of vitamin metabolism. The redox imbalance is probably not directly related to hyperhomocysteinemia and is hypothetically caused by other pathological processes or by an indirect effect of Hcy, for example, on the enzymatic antioxidant defence system (CAT activity), which requires further exploration. Further study of the role of Hcy in the pathogenesis of schizophrenia is relevant, since the proportion of patients with hyperhomocysteinemia is high and correlations of its level with negative symptoms of schizophrenia are noted.

SELECTION OF CITATIONS
SEARCH DETAIL
...