Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharmacol Exp Ther ; 285(2): 777-86, 1998 May.
Article in English | MEDLINE | ID: mdl-9580626

ABSTRACT

The discovery of (+/-)-epibatidine, a naturally occurring neuronal nicotinic acetylcholine receptor (nAChR) agonist with antinociceptive activity 200-fold more potent than that of morphine, has renewed interest in the potential role of nAChRs in pain processing. However, (+/-)-epibatidine has significant side-effect liabilities associated with potent activity at the ganglionic and neuromuscular junction nAChR subtypes which limit its potential as a clinical entity. ABT-594 [(R)-5-(2-azetidinylmethoxy)-2-chloropyridine] is a novel, potent cholinergic nAChR ligand with analgesic properties (see accompanying paper by Bannon et al., 1998b) that shows preferential selectivity for neuronal nAChRs and a consequently improved in vivo side-effect profile compared with (+/-)-epibatidine. ABT-594 is a potent inhibitor of the binding of [3H](-)-cytisine to alpha 4 beta 2 neuronal nAChRs (Ki = 37 pM, rat brain; Ki = 55 pM, transfected human receptor). At the alpha 1 beta 1 delta gamma neuromuscular nAChR labeled by [125I] alpha-bungarotoxin (alpha-Btx), ABT-594 has a Ki value of 10,000 nM resulting in a greater than 180,000-fold selectivity of the compound for the neuronal alpha 4 beta 2 nAChR. In contrast, (+/-)-epibatidine has Ki values of 70 pM and 2.7 nM at the alpha 4 beta 2 and alpha 1 beta 1 delta gamma nAChRs, respectively, giving a selectivity of only 38-fold. The S-enantiomer of ABT-594, A-98593 has activity at the neuronal alpha 4 beta 2 nAChR identical with ABT-594 (Ki = 34-39 pM), which demonstrates a lack of stereospecific binding similar to that reported previously for (+/-)-epibatidine. A similar lack of stereoselectivity is seen at the human alpha 7 receptor. However, A-98593 is 3-fold more potent at the neuromuscular nAChR (Ki = 3420 nM) and the brain alpha-Btx-sensitive nAChR (Ki = 4620 nM) than ABT-594. ABT-594 has weak affinity in binding assays for adrenoreceptor subtypes alpha-1B (Ki = 890 nM), alpha-2B (Ki = 597 nM) and alpha-2C (Ki = 342 nM), and it has negligible affinity (Ki > 1000 nM) for approximately 70 other receptors, enzyme and transporter binding sites. Functionally, ABT-594 is an agonist. At the transfected human alpha 4 beta 2 neuronal nAChR (K177 cells), with increased 86Rb+ efflux as a measure of cation efflux, ABT-594 had an EC50 value of 140 nM with an intrinsic activity (IA) compared with (-)-nicotine of 130%; at the nAChR subtype expressed in IMR-32 cells (sympathetic ganglion-like), an EC50 of 340 nM (IA = 126%); at the F11 dorsal root ganglion cell line (sensory ganglion-like), an EC50 of 1220 nM (IA = 71%); and via direct measurement of ion currents, an EC50 value of 56,000 nM (IA = 83%) at the human alpha 7 homooligimeric nAChR produced in oocytes. A-98593 is 2- to 3-fold more potent and displays approximately 50% greater intrinsic activity than ABT-594 in all four functional assays. In terms of potency, ABT-594 is 8- to 64-fold less active than (+/-)-epibatidine and also has less IA in these functional assays. ABT-594 (30 microM) inhibits the release of calcitonin gene-related peptide from C-fibers terminating in the dorsal horn of the spinal cord, an effect mediated via nAChRs. Pharmacologically, ABT-594 has an in vitro profile distinct from that of the prototypic nicotinic analgesic (+/-)-epibatidine, with the potential for substantially reduced side-effect liability and, as such, represents a potentially novel therapeutic approach to pain management.


Subject(s)
Analgesics, Non-Narcotic/pharmacology , Azetidines/pharmacology , Nicotinic Agonists/pharmacology , Pyridines/pharmacology , Receptors, Nicotinic/drug effects , Administration, Oral , Alkaloids/metabolism , Animals , Azocines , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Bungarotoxins/metabolism , Calcitonin Gene-Related Peptide/metabolism , Calcium/metabolism , Humans , Male , Quinolizines , Rats , Rats, Sprague-Dawley , Receptors, Nicotinic/physiology , Xenopus laevis
2.
J Med Chem ; 41(4): 407-12, 1998 Feb 12.
Article in English | MEDLINE | ID: mdl-9484491

ABSTRACT

New members of a previously reported series of 3-pyridyl ether compounds are disclosed as novel, potent analgesic agents acting through neuronal nicotinic acetylcholine receptors. Both (R)-2-chloro-5-(2-azetidinylmethoxy)pyridine (ABT-594, 5) and its S-enantiomer (4) show potent analgesic activity in the mouse hot-plate assay following either intraperitoneal (i.p.) or oral (p.o.) administration, as well as activity in the mouse abdominal constriction (writhing) assay, a model of persistent pain. Compared to the S-enantiomer and to the prototypical potent nicotinic analgesic agent (+/-)-epibatidine, 5 shows diminished activity in models of peripheral side effects. Structure-activity studies of analogues related to 4 and 5 suggest that the N-unsubstituted azetidine moiety and the 2-chloro substituent on the pyridine ring are important contributors to potent analgesic activity.


Subject(s)
Analgesics, Non-Narcotic/pharmacology , Azetidines/pharmacology , Neurons/physiology , Nicotinic Agonists/pharmacology , Pain , Pyridines/pharmacology , Receptors, Nicotinic/physiology , Administration, Oral , Analgesics, Non-Narcotic/administration & dosage , Analgesics, Non-Narcotic/chemistry , Animals , Azetidines/administration & dosage , Azetidines/chemistry , Diastole/drug effects , Female , Humans , Injections, Intraperitoneal , Kinetics , Mice , Molecular Structure , Muscle Contraction/drug effects , Neuroblastoma , Neurons/drug effects , Nicotinic Agonists/administration & dosage , Nicotinic Agonists/chemistry , Oocytes/physiology , Pain Measurement , Pyridines/administration & dosage , Pyridines/chemistry , Rats , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/metabolism , Recombinant Proteins/drug effects , Recombinant Proteins/metabolism , Stereoisomerism , Structure-Activity Relationship , Tumor Cells, Cultured , Xenopus
3.
J Pharmacol Exp Ther ; 283(1): 235-46, 1997 Oct.
Article in English | MEDLINE | ID: mdl-9336329

ABSTRACT

Accumulating preclinical and clinical evidence data suggests that compounds that selectively activate neuronal nicotinic acetylcholine receptor (nAChR) subtypes may have therapeutic utility for the treatment of several neurological disorders. In the present study, the in vitro pharmacological properties of the novel cholinergic channel modulator ABT-089 [2-methyl-3-(2-(S)-pyrrolidinylmethoxy)pyridine], are described. In radioligand binding studies, ABT-089 was shown to display selectivity toward the high-affinity (-)-cytisine binding site present on the alpha4beta2 nAChR subtype (Ki = 16 nM) relative to the [125I]alpha-bungarotoxin binding site present on the alpha7 (Ki > or = 10,000 nM) and alpha1beta1deltagamma (Ki > 1000 nM) nAChR subtypes. In cation flux and channel current studies, ABT-089 displayed a more complex profile than (-)-nicotine having agonist, partial agonist and inhibitory activities depending on the nAChR subtype with which it interacts. ABT-089 differentially stimulated neurotransmitter release. The compound displayed a similar potency and efficacy to (-)-nicotine to facilitate ACh release (ABT-089, EC50 = 3 microM; (-)-nicotine, EC50 = 1 microM), but was markedly less potent and less efficacious than (-)-nicotine to stimulate dopamine release (ABT-089, EC50 = 1.1 microM; (-)-nicotine, EC50 = 0.04 microM). Additionally, ABT-089 was neuroprotective against the excitotoxic insults elicited by exposure to glutamate in both rat cortical cell cultures (EC50 = 10 +/- 3 microM) and differentiated human IMR32 cells (EC50 = 3 +/- 2 microM). The differential full agonist/partial agonist profile of ABT-089, as compared with (-)-nicotine and ABT-418, illustrates the complexity of nAChR activation and the potential to target responses at subclasses of the neuronal and peripheral receptors.


Subject(s)
Cholinergic Agents/pharmacology , Ion Channels/drug effects , Neuroprotective Agents/pharmacology , Pyridines/pharmacology , Pyrrolidines/pharmacology , Receptors, Nicotinic/drug effects , Acetylcholine/metabolism , Alkaloids/metabolism , Animals , Azocines , Dopamine/metabolism , Humans , Male , Mice , Quinolizines , Rats , Rats, Sprague-Dawley , Receptors, Nicotinic/metabolism , Rubidium Radioisotopes/metabolism , Xenopus laevis
4.
Neuropharmacology ; 35(6): 725-34, 1996 Jun.
Article in English | MEDLINE | ID: mdl-8887981

ABSTRACT

The in vitro pharmacological properties of a novel cholinergic channel ligand, A-85380 [3-(2(S)-azetidinylmethoxy)pyridine], were examined using tissue preparations that express different putative nAChR subtypes. In radioligand binding studies, A-85380 is shown to be a potent and selective ligand for the human alpha 4 beta 2 nAChR subtype (Ki = 0.05 + 0.01 nM) relative to the human alpha 7 (Ki = 148 +/- 13 nM) and the muscle alpha 1 beta 1 dg subtype expressed in Torpedo electroplax (Ki = 314 +/- 12 nM). The R-enantiomer of A-85380, A-159470, displays little enantioselectivity towards the alpha 4 beta 2 and alpha 1 beta 1 delta gamma subtypes but does not display 12-fold enantioselectivity towards the alpha 7 subtype (Ki = 1275 +/- 199 nM). (+)- and(-)-Epibatidine display similar potencies at the human human alpha 4 beta 2 (Ki = 0.04 +/- 0.02 nM and 0.07 +/- 0.02 nM, respectively), human alpha 7 (Ki = 16 +/- 2 nM and 22 +/- 3 nM, respectively) and muscle alpha 1 beta 1 delta gamma g (Ki = 2.5 +/- 0.9 nM and 5.7 +/- 1.0 nM, respectively) nAChRs. Functionally, A-85380 is a potent activator of cation efflux through the human alpha 4 beta 2 (EC50 = 0.7 +/- 0.1 microM) and ganglionic (EC50 = 0.8 +/- 0.09 microM) subtypes, effects that are attenuated by pretreatment with mecamylamine (10 microM). Further, A-85380 can activate (EC50 = 8.9 +/- 1.9 microM) currents through channels formed by injection of the human alpha 7 subunit into Xenopus oocytes, effects that are attenuated by pretreatment with the alpha 7 nAChR antagonist, methyllycaconitine (10 nM). In all cases, A-85380 is more potent than (-)-nicotine but less potent than (+/-)-epibatidine. In neurotransmitter release studies, A-85380 stimulates the release of dopamine with an EC 50 value of 0.003 +/- 0.001 microM which is equipotent to (+/-)-epibatidine, and 20-fold more potent than (-)-nicotine (EC50 = 0.04 +/- 0.009 microM). Thus, A-85380 displays a profile of robust activation of a number of nAChR subtypes with substantially less affinity for [125I] alpha-BgT sites than [3H](-)-cytisine sites, suggesting that it may serve as a more selective pharmacologic probe for the alpha 4 beta 2 subtype relative to the alpha 7 and alpha 1 beta 1 delta g nAChRs than (+/-)-epibatidine.


Subject(s)
Azetidines/pharmacology , Nicotine/pharmacology , Pyridines/pharmacology , Receptors, Nicotinic/drug effects , Animals , Cations/metabolism , Dopamine/metabolism , Dose-Response Relationship, Drug , In Vitro Techniques , Male , Rats , Rats, Sprague-Dawley
5.
J Pharmacol Exp Ther ; 276(1): 289-97, 1996 Jan.
Article in English | MEDLINE | ID: mdl-8558445

ABSTRACT

(-)-Nicotine, the prototypical agonist for neuronal nicotinic acetylcholine receptors (nAChR) has been shown to bind with high affinity to the rodent and avian alpha 4 beta 2 nAChR subtype. This subtype may represent a primary molecular target for some of the beneficial central nervous system effects i.e., cognitive enhancement, anxiolysis, analgesia, neuroprotection, of (-)-nicotine and related ligands. However, a detailed study of the human alpha 4 beta 2 subunit combination has not yet been reported. In this study, we stably coexpressed the human neuronal alpha 4 and beta 2 nAChR subunits in human embryonic kidney (HEK) 293 cells and studied its pharmacological and regulatory properties. [3H]Cytisine bound to stably transfected cells with high affinity (KD value, 0.2 +/- 0.04 nM) and with a Bmax value of 1359 +/- 91 fmol/mg protein. A good correlation (r = 0.98) was observed between binding affinities in transfected cells and in native neuronal preparations for a series of nAChR ligands. 86Rb+ efflux studies showed that stably transfected cells express functional ion channels that are sensitive to blockade by dihydro-beta-erythroidine. (+/-)-Epibatidine, (-)-nicotine, 1,1-dimethyl-4-phenylpiperazinium, (S)-3-methyl-5-(1-methyl-2-pyrrolidinyl)isoxazole (ABT-418), acetylcholine and (-)-cytisine stimulated 86Rb+ efflux with EC50 values of 0.02, 3.9, 2.5, 10, 44 and 38 microM, respectively. Treatment of transfected cells with (-)-nicotine for 7 days led to a significant increase in the density of [3H](-)-cytisine binding sites (EC50 = 0.56 microM) and a significant enhancement in the sensitivity of ACh. Specific binding or (-)-nicotine-evoked cation efflux was not detected in untransfected cells. Analysis of total cellular RNA from transfected, but not untransfected cells, showed the expected fragment sizes corresponding to the human alpha 4 and beta 2 subunit mRNA. These results demonstrate that stable expression of the human alpha 4 beta 2 nAChR subunit combination can give rise to functional ion channels that bind [3H](-)-cytisine with high affinity, exhibit homologous regulation and evoke agonist-induced cation flux with pharmacological properties consistent with native neuronal alpha 4 beta 2 nAChR.


Subject(s)
Neurons/ultrastructure , Receptors, Nicotinic/drug effects , Receptors, Nicotinic/physiology , Alkaloids/metabolism , Animals , Azocines , Base Sequence , Cells, Cultured , DNA, Complementary/genetics , Humans , Kidney/cytology , Kidney/physiology , Kinetics , Male , Molecular Sequence Data , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Quinolizines , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Receptors, Nicotinic/genetics , Stereoisomerism , Transfection , Tritium , Up-Regulation/drug effects
6.
Neuropharmacology ; 34(6): 583-90, 1995 Jun.
Article in English | MEDLINE | ID: mdl-7566493

ABSTRACT

Responses of the human alpha 7 nicotinic acetylcholine receptor (nAChR) in Xenopus laevis oocytes were quantified using two-electrode voltage clamp in the presence of barium (10 mM) to block secondary activation of Ca(2+)-dependent chloride currents. The effect of (S)-3-methyl-5-(1-methyl-2-pyrrolidinyl) isoxazole (ABT-418) and (2,4)-dimethoxybenzylidene anabaseine (GTS-21), two potential compounds for the treatment of Alzheimer's Disease, and of the natural product (+/-)epibatidine were compared to (-)nicotine. (+/-)Epibatidine acted as an agonist and was 64-fold more potent than (-) nicotine (EC50s = 1.30 +/- 0.11 microM and 83 +/- 10 microM, respectively). ABT-418 also was an agonist, 3-fold less potent and 75% as efficacious as (-)nicotine (EC50 = 264 +/- 34 microM). GTS-21, in contrast, inhibited the response to (-)nicotine at concentrations < or = 10 microM and itself elicited only a small response at higher concentrations (12% of the (-)nicotine response at 1 mM). Reversible blockade by methyllycaconitine (10 nM) corroborated the responses as due to activation of alpha 7 nAChR. This represents the first characterization of human alpha 7 nAChR responses to these novel nicotinic agonists.


Subject(s)
Ligands , Oocytes/drug effects , Receptors, Nicotinic/drug effects , Anti-Anxiety Agents/pharmacology , Barium/pharmacology , Benzylidene Compounds/pharmacology , Binding, Competitive , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Calcium/pharmacology , Chloride Channels/drug effects , Dose-Response Relationship, Drug , Humans , Isoxazoles/pharmacology , Membrane Potentials/drug effects , Nicotinic Agonists/pharmacology , Patch-Clamp Techniques , Pyridines/pharmacology , Pyrrolidines/pharmacology , RNA, Messenger/biosynthesis
7.
Eur J Pharmacol ; 280(1): 79-89, 1995 Jun 23.
Article in English | MEDLINE | ID: mdl-7498257

ABSTRACT

Erysodine, an erythrina alkaloid related to dihydro-beta-erythroidine, was found to be a more potent inhibitor of [3H]cytisine binding at neuronal nicotinic acetylcholine receptors but a less potent inhibitor of [125I]alpha-bungarotoxin binding at muscle-type nicotinic acetylcholine receptors than dihydro-beta-erythroidine. Erysodine was a competitive, reversible antagonist of (-)-nicotine-induced dopamine release from striatal slices and inhibited (-)-nicotine-induced 86Rb+ efflux from IMR-32 cells. Erysodine was equipotent with dihydro-beta-erythroidine in the dopamine release assay but 10-fold more potent in the 86Rb+ efflux assay, suggesting differential subtype selectivity for these two antagonists. Erysodine, systemically administered to mice, entered the brain and significantly attentuated nicotine's hypothermic effects and its anxiolytic-like effects in the elevated plus-maze test. There was greater separation between antagonist and toxic doses for erysodine than for dihydro-beta-erythroidine, perhaps because of erysodine's greater selectivity for neuronal receptors. In rats, erysodine prevented both the early developing decrease and the late-developing increase in locomotor activity produced by (-)-nicotine. The potent and competitive nature of erysodine's antagonism together with its ability to enter the brain after systemic administration suggest that erysodine may be a useful tool in characterizing neuronal nicotinic acetylcholine receptors.


Subject(s)
Dihydro-beta-Erythroidine/analogs & derivatives , Neurons/ultrastructure , Nicotinic Antagonists/pharmacology , Alkaloids/metabolism , Animals , Azocines , Behavior, Animal/drug effects , Binding, Competitive , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dihydro-beta-Erythroidine/pharmacology , Dopamine/metabolism , Locomotion/drug effects , Male , Mice , Mice, Inbred Strains , Muscles/metabolism , Muscles/ultrastructure , Neuroblastoma/metabolism , Neurons/metabolism , Quinolizines , Rats , Rats, Sprague-Dawley , Rats, Wistar , Rubidium/pharmacokinetics , Rubidium Radioisotopes , Temperature , Tritium , Tumor Cells, Cultured
8.
J Pharmacol Exp Ther ; 271(2): 624-31, 1994 Nov.
Article in English | MEDLINE | ID: mdl-7965777

ABSTRACT

(+/-)-Epibatidine, exo-2-(6-chloro-3-pyridyl)-7-azabicyclo-[2.2.1] heptane, is a novel, potent analgesic agent that acts through nicotinic acetylcholine receptor (nAChR) mechanisms. This study sought to establish whether (+/-)-epibatidine, like (-)-nicotine, also displays a wide diversity of behavioral responses that are known to be elicited by nAChR activation or whether it demonstrates subtype selectivity for its interactions with nAChRs.(+/-)-Epibatidine displaced [3H](-)-cytisine binding to the alpha 4 beta 2 nAChR subtype in rat brain membranes with high affinity (Ki, 43 pM). The compound was approximately 5000-fold less potent (Ki = 230nM) in the displacement of [125I] alpha-bungarotoxin binding from the alpha-bungarotoxin-sensitive nAChR subtype present in rat brain but was a potent inhibitor (Ki, 2.7 nM) of [125I] alpha-bungarotoxin binding to the nAChR subtype in Torpedo electroplax, which is similar to that present in the neuromuscular junction. Functionally, (+/-)-epibatidine enhanced 86Rb+ flux in IMR 32 cells with an EC50 value of 7 nM. It was some 3000-fold more potent than (-)-nicotine (EC50 value, 21,000 nM) and was approximately 150-fold more potent (EC50 value, 0.4 nM) than (-)-nicotine (EC50 value = 60 nM) in increasing [3H]dopamine release from rat striatal slices. Remarkably, (+/-)-epibatidine was 40% to 50% more efficacious than (-)-nicotine in both functional assays. Both functional effects were blocked by the nAChR channel blocker, mecamylamine (100 microM). (+/-)-Epibatidine was 300 to 1000 times more potent than (-)-nicotine in the reduction of body temperature and locomotor activity in mice.(ABSTRACT TRUNCATED AT 250 WORDS)


Subject(s)
Analgesics/pharmacology , Bridged Bicyclo Compounds, Heterocyclic , Bridged Bicyclo Compounds/pharmacology , Pyridines/pharmacology , Receptors, Nicotinic/drug effects , Alkaloids/metabolism , Animals , Azocines , Bungarotoxins/metabolism , Corpus Striatum/drug effects , Corpus Striatum/metabolism , Dopamine/metabolism , In Vitro Techniques , Male , Motor Activity/drug effects , Nicotine/pharmacology , Quinolizines , Rats , Rats, Sprague-Dawley , Receptors, Nicotinic/physiology , Rubidium Radioisotopes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...