Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Braz. j. microbiol ; 48(4): 764-768, Oct.-Dec. 2017. graf
Article in English | LILACS | ID: biblio-889184

ABSTRACT

ABSTRACT Clostridium perfringens is the causative agent for necrotic enteritis. It secretes the major virulence factors, and α- and NetB-toxins that are responsible for intestinal lesions. The TpeL toxin affects cell morphology by producing myonecrosis, but its role in the pathogenesis of necrotic enteritis is unclear. In this study, the presence of netB and tpeL genes in C. perfringens type A strains isolated from chickens with necrotic enteritis, their cytotoxic effects and role in adhesion and invasion of epithelial cells were evaluated. Six (27.3%) of the 22 C. perfringens type A strains were harboring the tpeL gene and produced morphological alterations in Vero cells after 6 h of incubation. Strains tpeL (-) induced strong cell rounding after 6 h of incubation and produced cell enlargement. None of the 22 strains harbored netB gene. All the six tpeL (+) gene strains were able to adhere to HEp-2 cells; however, only four of them (66.6%) were invasive. Thus, these results suggest that the presence of tpeL gene or TpeL toxin might be required for the adherence of bacteria to HEp-2 cells; however, it could not have any role in the invasion process.


Subject(s)
Humans , Animals , Poultry Diseases/microbiology , Bacterial Adhesion , Clostridium Infections/microbiology , Clostridium Infections/veterinary , Clostridium perfringens/physiology , Epithelial Cells/microbiology , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Vero Cells , Chlorocebus aethiops , Chickens , Clostridium perfringens/isolation & purification , Clostridium perfringens/genetics
2.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469620

ABSTRACT

ABSTRACT Most Escherichia coli strains live harmlessly in the intestines and rarely cause disease in healthy individuals. Nonetheless, a number of pathogenic strains can cause diarrhea or extraintestinal diseases both in healthy and immunocompromised individuals. Diarrheal illnesses are a severe public health problem and a major cause of morbidity and mortality in infants and young children, especially in developing countries. E. coli strains that cause diarrhea have evolved by acquiring, through horizontal gene transfer, a particular set of characteristics that have successfully persisted in the host. According to the group of virulence determinants acquired, specific combinations were formed determining the currently known E. coli pathotypes, which are collectively known as diarrheagenic E. coli. In this review, we have gathered information on current definitions, serotypes, lineages, virulence mechanisms, epidemiology, and diagnosis of the major diarrheagenic E. coli pathotypes.

3.
Mem. Inst. Oswaldo Cruz ; 106(2): 146-152, Mar. 2011. ilus, graf, tab
Article in English | LILACS, Sec. Est. Saúde SP | ID: lil-583937

ABSTRACT

Typical and atypical enteropathogenic Escherichia coli (EPEC) are considered important bacterial causes of diarrhoea. Considering the repertoire of virulence genes, atypical EPEC (aEPEC) is a heterogeneous group, harbouring genes that are found in other diarrheagenic E. coli pathotypes, such as those encoding haemolysins. Haemolysins are cytolytic toxins that lyse host cells disrupting the function of the plasma membrane. In addition, these cytolysins mediate a connection to vascular tissue and/or blood components, such as plasma and cellular fibronectin. Therefore, we investigated the haemolytic activity of 72 aEPEC isolates and determined the correlation of this phenotype with the presence of genes encoding enterohaemolysins (Ehly) and cytolysin A (ClyA). In addition, the correlation between the expression of haemolysins and the ability of these secreted proteins to adhere to extracellular matrix (ECM) components was also assessed in this study. Our findings demonstrate that a subset of aEPEC presents haemolytic activity due to the expression of Ehlys and/or ClyA and that this activity is closely related to the ability of these isolates to bind to ECM components.


Subject(s)
Animals , Humans , Rabbits , Enteropathogenic Escherichia coli/physiology , Escherichia coli Proteins/physiology , Extracellular Matrix , Enteropathogenic Escherichia coli , Enteropathogenic Escherichia coli , Escherichia coli Proteins , Genes, Bacterial , Hemolysin Proteins , Phenotype , Polymerase Chain Reaction , Serotyping , Virulence Factors
4.
BMC Res Notes ; 4: 30, 2011 Feb 02.
Article in English | MEDLINE | ID: mdl-21288327

ABSTRACT

BACKGROUND: Intimin is an important virulence factor involved in the pathogenesis of enteropathogenic Escherichia coli (EPEC) and enterohemorrhagic Escherichia coli (EHEC). Both pathogens are still important causes of diarrhea in children and adults in many developing and industrialized countries. Considering the fact that antibodies are important tools in the detection of various pathogens, an anti-intimin IgG2b monoclonal antibody was previously raised in immunized mice with the conserved sequence of the intimin molecule (int388-667). In immunoblotting assays, this monoclonal antibody showed excellent specificity. Despite good performance, the monoclonal antibody failed to detect some EPEC and EHEC isolates harboring variant amino acids within the 338-667 regions of intimin molecules. Consequently, motivated by its use for diagnosis purposes, in this study we aimed to the cloning and expression of the single-chain variable fragment from this monoclonal antibody (scFv). FINDINGS: Anti-intimin hybridoma mRNA was extracted and reversely transcripted to cDNA, and the light and heavy chains of the variable fragment of the antibody were amplified using commercial primers. The amplified chains were cloned into pGEM-T Easy vector. Specific primers were designed and used in an amplification and chain linkage strategy, obtaining the scFv, which in turn was cloned into pAE vector. E. coli BL21(DE3)pLys strain was transformed with pAE scFv-intimin plasmid and subjected to induction of protein expression. Anti-intimin scFv, expressed as inclusion bodies (insoluble fraction), was denatured, purified and submitted to refolding. The protein yield was 1 mg protein per 100 mL of bacterial culture. To test the functionality of the scFv, ELISA and immunofluorescence assays were performed, showing that 275 ng of scFv reacted with 2 mg of purified intimin, resulting in an absorbance of 0.75 at 492 nm. The immunofluorescence assay showed a strong reactivity with EPEC E2348/69. CONCLUSION: This study demonstrated that the recombinant anti-intimin antibody obtained is able to recognize the conserved region of intimin (Int388-667) in purified form and the EPEC isolate.

5.
Int. microbiol ; 12(4): 243-251, dic. 2009. tab
Article in English | IBECS | ID: ibc-77877

ABSTRACT

A collection of 69 eae-positive strains expressing 29 different intimin types and eight tir alleles was characterized with respect to their adherence patterns to HeLa cells, ability to promote actin accumulation in vitro, the presence of bfpA alleles in positive strains, and bundle-forming pilus (BFP) expression. All of the nine typical enteropathogenic Escherichia coli (tEPEC) studied harbored the enteropathogenic E. coli adherence factor (EAF) plasmid, as shown by PCR and/or EAF probe results. In addition, they were positive for bfpA, as shown by PCR, and BFP expression, as confirmed by immunofluorescence (IFL) and/or immunoblotting (IBL) assays. Localized adherence (LA) was exclusively displayed by those nine tEPEC, while localized-adherence-like (LAL) was the most frequent pattern among atypical EPEC (aEPEC) and Shiga-toxinproducing E. coli (STEC). All LA and LAL strains were able to cause attaching and effacing (AE) lesions, as established by means of the FAS test. There was a significant association between the presence of tir allele alpha1 and bfpA-positive strains, and consequently, with the LA pattern. However, intimin type or bfpA was not associated with the adherence pattern displayed in HeLa cells. Among the eight bfpA alleles detected, a new type (beta10; accession number FN391178) was identified in a strain of serotype O157:H45, and a truncated variant (beta3.2-t; accession number FN 391181) in four strains belonging to different pathotypes (AU)


No disponible


Subject(s)
Humans , Bacterial Adhesion , Actins/metabolism , Enteropathogenic Escherichia coli/pathogenicity , Shiga-Toxigenic Escherichia coli/pathogenicity , Alleles , Fimbriae, Bacterial/physiology , Escherichia coli Proteins/genetics , DNA, Bacterial/genetics , Genotype , HeLa Cells , Microscopy, Fluorescence , Polymerase Chain Reaction , Plasmids
SELECTION OF CITATIONS
SEARCH DETAIL
...