Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Metab ; 2(12): 1373-1381, 2020 12.
Article in English | MEDLINE | ID: mdl-33230296

ABSTRACT

The oncogenic KRAS mutation has a critical role in the initiation of human pancreatic ductal adenocarcinoma (PDAC) since it rewires glutamine metabolism to increase reduced nicotinamide adenine dinucleotide phosphate (NADPH) production, balancing cellular redox homeostasis with macromolecular synthesis1,2. Mitochondrial glutamine-derived aspartate must be transported into the cytosol to generate metabolic precursors for NADPH production2. The mitochondrial transporter responsible for this aspartate efflux has remained elusive. Here, we show that mitochondrial uncoupling protein 2 (UCP2) catalyses this transport and promotes tumour growth. UCP2-silenced KRASmut cell lines display decreased glutaminolysis, lower NADPH/NADP+ and glutathione/glutathione disulfide ratios and higher reactive oxygen species levels compared to wild-type counterparts. UCP2 silencing reduces glutaminolysis also in KRASWT PDAC cells but does not affect their redox homeostasis or proliferation rates. In vitro and in vivo, UCP2 silencing strongly suppresses KRASmut PDAC cell growth. Collectively, these results demonstrate that UCP2 plays a vital role in PDAC, since its aspartate transport activity connects the mitochondrial and cytosolic reactions necessary for KRASmut rewired glutamine metabolism2, and thus it should be considered a key metabolic target for the treatment of this refractory tumour.


Subject(s)
Aspartic Acid/metabolism , Carcinoma, Pancreatic Ductal/metabolism , Glutamine/metabolism , Pancreatic Neoplasms/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , Uncoupling Protein 2/metabolism , Animals , Biological Transport, Active , Cell Line, Tumor , Cytosol/metabolism , Female , Humans , Mice , Mice, SCID , Mitochondria/metabolism , NADP/metabolism , Oxidation-Reduction , Reactive Oxygen Species/metabolism , Xenograft Model Antitumor Assays
2.
J Biochem ; 164(4): 313-322, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29893873

ABSTRACT

Several ATP-depending reactions take place in the endoplasmic reticulum (ER). Although in Saccharomyces cerevisiae ER the existence of a Sac1p-dependent ATP transport system was already known, its direct involvement in ATP transport was excluded. Here we report an extensive biochemical characterization of a partially purified adenine nucleotide transport system (ANTS) not dependent on Sac1p. Highly purified ER membranes from the wild-type and Δsac1 yeast strains reconstituted into liposomes transported ATP with the same efficiency. A chromatography on hydroxyapatite was used to partially purify ANTS from Δsac1 ER extract. The two ANTS-enriched transport activity eluted fractions showed essentially the presence of four bands, one having an apparent MW of 56 kDa, similar to that observed for ANTS identified in rat liver ER. The two fractions reconstituted into liposomes efficiently transported, by a strict counter-exchange mechanism, ATP and ADP. ATP transport was saturable with a Km of 0.28 mM. The ATP/ADP exchange mechanism and the kinetic constants suggest that the main physiological role of ANTS is to catalyse the transport of ATP into ER, where it is used in several energy-requiring reactions and to export back to the cytosol the ADP produced.


Subject(s)
Endoplasmic Reticulum/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae , Adenosine Triphosphate/chemistry , Adenosine Triphosphate/metabolism , Biological Transport , Endoplasmic Reticulum/chemistry , Mass Spectrometry , Saccharomyces cerevisiae Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...