Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oper Dent ; 46(1): 107-115, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33882140

ABSTRACT

CLINICAL RELEVANCE: Use of zirconia primers with a low pH and a high acidic monomer concentration should be employed in combination with dual-cure resin cements that are less sensitive to an acidic environment. Primers with lower 10-MDP concentrations attain better outcomes.


Subject(s)
Dental Bonding , Resin Cements , Materials Testing , Methacrylates , Shear Strength , Surface Properties , Zirconium
2.
J Mech Behav Biomed Mater ; 82: 95-101, 2018 06.
Article in English | MEDLINE | ID: mdl-29574280

ABSTRACT

OBJECTIVES: Hydroxyethyl-methacrylate (HEMA) is still widely used in simplified adhesives. Indeed, several shortcomings occur with this monomer, such as water uptake and formation of linear polymers. This study aimed to compare the effects of HEMA replacement by glycerol-dimethacrylate (GDMA) on selected physicochemical properties and bonding performance of simplified model adhesives. MATERIALS AND METHODS: Experimental simplified etch-and-rinse and self-etch adhesives were formulated containing 20 wt% HEMA or GDMA. Three-point bending test was used to obtain the elastic modulus of bar-shaped specimens, and water sorption and solubility were attained by ISO-4049 (ISO, 2009) method. Degree of conversion was surveyed by Micro-Raman spectroscopy, and microtensile bond strength was tested after 24 h or 6 months simulated pulpal pressure aging. Statistical analysis was realized with two-way ANOVA and Tukey's test (p < 0.05). RESULTS: GDMA promoted higher elastic modulus to the self-etch adhesive, and GDMA-containing etch-and-rinse adhesive achieved overall lower water sorption and solubility. The degree of conversion was statistically higher for GDMA adhesives than for HEMA etch-and-rinse one. All bond strengths dropped significantly after aging, except that of GDMA self-etch adhesive. The nanoleakage was higher and gaps were found in the interface of HEMA-containing adhesives, which were less present in GDMA equivalents. CONCLUSIONS: GDMA is a feasible hydrophilic dimethacrylate monomer to replace HEMA in simplified adhesives, thereby providing better polymerization, mechanical properties and dentin adhesion as well as lower water uptake and solubility.


Subject(s)
Adhesives/chemistry , Glycerol/chemistry , Hydrophobic and Hydrophilic Interactions , Methacrylates/chemistry , Tensile Strength
SELECTION OF CITATIONS
SEARCH DETAIL
...