Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Br J Anaesth ; 114(2): 319-26, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25145353

ABSTRACT

BACKGROUND: The neuropathy of type II diabetes mellitus (DM) is increasing in prevalence worldwide. We aimed to test the hypothesis that in a rodent model of type II DM, neuropathy would lead to increased neurotoxicity and block duration after lidocaine-induced sciatic nerve block when compared with control animals. METHODS: Experiments were carried out in Zucker diabetic fatty rats aged 10 weeks (early diabetic) or 18 weeks (late diabetic, with or without insulin 3 units per day), and age-matched healthy controls. Left sciatic nerve block was performed using 0.2 ml lidocaine 2%. Nerve conduction velocity (NCV) and F-wave latency were used to quantify nerve function before, and 1 week after nerve block, after which sciatic nerves were used for neurohistopathology. RESULTS: Early diabetic animals did not show increased signs of nerve dysfunction after nerve block. In late diabetic animals without insulin vs control animals, NCV was 34.8 (5.0) vs 41.1 (4.1) ms s(-1) (P<0.01), and F-wave latency was 7.7 (0.5) vs 7.0 (0.2) ms (P<0.01), respectively. Motor nerve block duration was prolonged in late diabetic animals, but neurotoxicity was not. Late diabetic animals receiving insulin showed intermediate results. CONCLUSIONS: In a rodent type II DM model, nerves have increased sensitivity for short-acting local anaesthetics without adjuvants in vivo, as evidenced by prolonged block duration. This sensitivity appears to increase with the progression of neuropathy. Our results do not support the hypothesis that neuropathy due to type II DM increases the risk of nerve injury after nerve block.


Subject(s)
Diabetic Neuropathies/complications , Nerve Block/methods , Neurotoxicity Syndromes/physiopathology , Sciatic Nerve , Aging/physiology , Animals , Blood Glucose/metabolism , Body Weight/drug effects , Electrophysiological Phenomena/drug effects , Neurotoxicity Syndromes/pathology , Rats , Rats, Zucker , Sciatic Nerve/pathology
2.
Br J Anaesth ; 112(2): 370-9, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24065730

ABSTRACT

BACKGROUND: Signalling of several G-protein-coupled receptors of the Gq/11 family is time-dependently inhibited by local anaesthetics (LAs). Since LA-induced modulation of muscarinic m1 and m3 receptor function may explain their beneficial effects in clinical practice, such as decreased postoperative cognitive dysfunction or less bronchoconstriction, we studied how prolonged exposure affects muscarinic signalling (Wang D, Wu X, Li J, Xiao F, Liu X, Meng M. The effect of lidocaine on early postoperative cognitive dysfunction after coronary artery bypass surgery. Anesth Analg 2002; 95: 1134-41; Groeben H, Silvanus MT, Beste M, Peters J. Combined lidocaine and salbutamol inhalation for airway anesthesia markedly protects against reflex bronchoconstriction. Chest 2000; 118: 509-15). METHODS: A two-electrode voltage clamp was used to assess the effects of lidocaine or its permanently charged analogue QX314 on recombinantly expressed m1 and m3 receptors in Xenopus oocytes. Antisense knock-down of functional Gαq-protein and inhibition of protein kinase C (PKC) served to define mechanisms and sites of action. RESULTS: Lidocaine affected muscarinic signalling in a biphasic way: an initial decrease in methylcholine bromide-elicited m1 and m3 responses after 30 min, followed by a significant increase in muscarinic responses after 8 h. Intracellularly injected QX314 time-dependently inhibited muscarinic signalling, but had no effect in Gαq-depleted oocytes. PKC-antagonism enhanced m1 and m3 signalling, but completely abolished the LA-induced increase in muscarinic responses, unmasking an underlying time-dependent inhibition of m1 and m3 responses after 8 h. CONCLUSIONS: Lidocaine modulates muscarinic m1 and m3 receptors in a time- and Gαq-dependent manner, but this is masked by enhanced PKC activity. The biphasic time course may be due to interactions of LAs with an extracellular receptor domain, modulated by PKC activity. Prolonged exposure to LAs may not benefit pulmonary function, but may positively affect postoperative cognitive function.


Subject(s)
Anesthetics, Local/pharmacology , Lidocaine/pharmacology , Receptor, Muscarinic M1/drug effects , Receptor, Muscarinic M3/drug effects , Signal Transduction/drug effects , Animals , Oocytes/drug effects , Oocytes/metabolism , Rats , Receptor, Muscarinic M1/metabolism , Receptor, Muscarinic M3/metabolism , Time Factors , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...