Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(10)2024 May 08.
Article in English | MEDLINE | ID: mdl-38794519

ABSTRACT

This work describes the preparation of a molecularly imprinted polymer (MIP) platform on polyethylene terephthalate (MIP-PET) via RAFT polymerization for analyzing tartrazine using a smartphone. The MIP-PET platform was characterized using Fourier transform infrared (FTIR) techniques, Raman Spectroscopy, X-ray photoelectron spectroscopy (XPS), and confocal microscopy. The optimal pH and adsorption time conditions were determined. The adsorption capacity of the MIP-PET plates with RAFT treatment (0.057 mg cm-2) was higher than that of the untreated plates (0.028 mg cm-2). The kinetic study revealed a pseudo-first-order model with intraparticle diffusion, while the isotherm study indicated a fit for the Freundlich model. Additionally, the MIP-PET demonstrated durability by maintaining its adsorption capacity over five cycles of reuse without significant loss. To quantify tartrazine, images were captured using a smartphone, and the RGB values were obtained using the ImageJ® free program. A partial least squares regression (PLS) was performed, obtaining a linear range of 0 to 7 mg L-1 of tartrazine. The accuracy of the method was 99.4% (4.97 ± 0.74 mg L-1) for 10 samples of 5 mg L-1. The concentration of tartrazine was determined in two local soft drinks (14.1 mg L-1 and 16.5 mg L-1), with results comparable to the UV-visible spectrophotometric method.

2.
Polymers (Basel) ; 16(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38543338

ABSTRACT

This study presents a new optical sensor for tartrazine (TAR) quantification developed using a molecularly imprinted polymer (MIP) as the recognition element, with optical fiber serving as the supporting substrate. The fiber surface was functionalized with 3-(trimethoxysilyl)propyl methacrylate (MPS), and the fiber was coated with MIP using the precipitation polymerization method. The analysis of MIP immobilization on the functionalized optical fiber (FF) was conducted through the use of scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) techniques. Experimental parameters, such as contact time and fiber length, were adjusted in order to obtain the highest sensitive response signal for the functionalized optical fiber (FF-MIP). The fiber sensor, FF-MIP, exhibited a relatively higher response signal for tartrazine compared to other interfering dyes. The rapid and total desorption of the analyte from FF-MIP allowed the immediate reemployment of FF-MIP, which also presented an acceptable repeatability for the reflectance signal. The imprinting factors for the studied dyes were between 0.112 and 0.936 in front of TAR, 1.405, and selectivity factors were between 1.501 and 12.545, confirming the sensor selectivity. The FF-MIP sensor was successfully applied for tartrazine quantification in real water samples, where it yielded satisfactory results comparable to those of the HPLC reference method.

3.
J Chem Phys ; 160(8)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38407289

ABSTRACT

This study investigates the stability of chiral-molecule solution phases, with a specific focus on amino acids. The model framework is based on a two-dimensional square lattice model, where individual sites may be occupied by oriented chiral molecules or structureless solvent particles. Utilizing the Glauber dynamics and statistical mechanical formalism, as previously introduced and examined by Lombardo et al., we explore the influence of temperature, amino acid concentration, enantiomeric excess, and homochiral interaction strength on nucleation mechanisms, equilibrium phase behavior, and crystal composition. Our findings offer thermodynamic insights into the chiral amplification process of amino acids, contributing to a deeper understanding of the underlying processes.

4.
Polymers (Basel) ; 16(3)2024 Jan 29.
Article in English | MEDLINE | ID: mdl-38337251

ABSTRACT

Curcumin is a compound of great importance in the food industry due to its biological and pharmacological properties, which include being an antioxidant, anti-inflammatory, antibacterial, antiviral, and anticarcinogenic. This paper proposes the synthesis of an electrochemical sensor based on molecularly imprinted polymers (MIPs) and MWCNT by drop casting deposited on a glassy carbon electrode (GCE) for the selective quantification of curcumin in food samples. The synthesized compounds are characterized by Fourier transform infrared (IR), Brunauer-Emmett-Teller (BET), and electrochemical techniques such as cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The optimal conditions for further experiments were determined by selecting these parameters. We examined three food products, commercial capsules, turmeric rhizomes, and commercial turmeric powder, employing both electrochemical and HPLC methods for the analysis. The electrochemical method revealed a limit of detection (LOD) value of 0.1365 µmol L-1, compared with the HPLC analysis, which gave a value of 3.55 µmol L-1. Furthermore, the MIP material demonstrated superior selectivity for the analyte compared to potential interferents. The recovery percentage, determined using the HPLC method, fell within the range of 87.5% to 102.6.

5.
Polymers (Basel) ; 15(18)2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37765563

ABSTRACT

In this paper, we present an alternative technique for the removal of Brilliant Green dye (BG) in aqueous solutions based on the application of molecularly imprinted polymer (MIP) as a selective adsorbent for BG. The MIP was prepared by bulk radical polymerization using BG as the template; methacrylic acid (MAA) as the functional monomer, selected via computer simulations; ethylene glycol dimethacrylate (EGDMA) as cross-linker; and 2,2'-azobis(2-methylpropionitrile) (AIBN) as the radical initiator. Scanning electron microscopy (SEM) analyses of the MIP and non-molecularly imprinted polymer (NIP)-used as the control material-showed that the two polymers exhibited similar morphology in terms of shape and size; however, N2 sorption studies showed that the MIP displayed a much higher BET surface (three times bigger) compared to the NIP, which is clearly indicative of the adequate formation of porosity in the former. The data obtained from FTIR analysis indicated the successful formation of imprinted polymer based on the experimental procedure applied. Kinetic adsorption studies revealed that the data fitted quite well with a pseudo-second order kinetic model. The BG adsorption isotherm was effectively described by the Langmuir isotherm model. The proposed MIP exhibited high selectivity toward BG in the presence of other interfering dyes due to the presence of specific recognition sites (IF = 2.53) on its high specific surface area (112 m2/g). The imprinted polymer also displayed a great potential when applied for the selective removal of BG in real river water samples, with recovery ranging from 99 to 101%.

6.
Polymers (Basel) ; 15(16)2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37631390

ABSTRACT

Curcumin is the main colorant of the curcuma longa plant, a food with many benefits for human health. This work aims to synthesize a novel molecularly imprinted polymer (MIP) for the selective detection of curcumin in real samples obtained from the local market of Peru. MIPs were synthesized via bulk polymerization using curcumin, acrylamide, ethylene glycol dimethacrylate, ABCV, and acetonitrile. FTIR spectra showed equal spectra for MIP and NIP. N2 physisorption analysis presented a higher value BET surface for the MIP (28.5 m2 g-1) compared to the NIP (18.5 m2 g-1). The adsorption capacity of the MIP was evaluated using UV-vis spectrophotometry in the band around 430 nm. The adsorption kinetics found were of pseudo-second-order and a Qe value of 16.2 mg g-1. Furthermore, the adsorption process resembles the Freundlich adsorption model with a heterogeneity factor of less than 1 (0.61) and Kf greater for MIP (1.97). The selectivity test indicated that MIP is more selective for curcumin (Q = 13.20 mg g-1) than against interferents (Q = 2.19 mg g-1). The specific selectivity factor (S) obtained for the interferents was greater than 1 which indicates a good selectivity. Finally, the application of MIP in real samples using UV-vis spectrophotometry yielded a recovery value greater than 70%.

7.
Biosensors (Basel) ; 13(6)2023 Jun 09.
Article in English | MEDLINE | ID: mdl-37367004

ABSTRACT

The present study reports the development and application of a rapid, low-cost in-situ method for the quantification of tartrazine in carbonated beverages using a smartphone-based colorimetric device with molecularly imprinted polymer (MIP). The MIP was synthesized using the free radical precipitation method with acrylamide (AC) as the functional monomer, N,N'-methylenebisacrylamide (NMBA) as the cross linker, and potassium persulfate (KPS) as radical initiator. The smartphone (RadesPhone)-operated rapid analysis device proposed in this study has dimensions of 10 × 10 × 15 cm and is illuminated internally by light emitting diode (LED) lights with intensity of 170 lux. The analytical methodology involved the use of a smartphone camera to capture images of MIP at various tartrazine concentrations, and the subsequent application of the Image-J software to calculate the red, green, blue (RGB) color values and hue, saturation, value (HSV) values from these images. A multivariate calibration analysis of tartrazine in the range of 0 to 30 mg/L was performed, and the optimum working range was determined to be 0 to 20 mg/L using five principal components and a limit of detection (LOD) of 1.2 mg/L was obtained. Repeatability analysis of tartrazine solutions with concentrations of 4, 8, and 15 mg/L (n = 10) showed a coefficient of variation (% RSD) of less than 6%. The proposed technique was applied to the analysis of five Peruvian soda drinks and the results were compared with the UHPLC reference method. The proposed technique showed a relative error between 6% and 16% and % RSD lower than 6.3%. The results of this study demonstrate that the smartphone-based device is a suitable analytical tool that offers an on-site, cost-effective, and rapid alternative for the quantification of tartrazine in soda drinks. This color analysis device can be used in other molecularly imprinted polymer systems and offers a wide range of possibilities for the detection and quantification of compounds in various industrial and environmental matrices that generate a color change in the MIP matrix.


Subject(s)
Molecular Imprinting , Polymers , Molecularly Imprinted Polymers , Colorimetry , Tartrazine , Smartphone , Molecular Imprinting/methods
8.
Biomimetics (Basel) ; 8(1)2023 Feb 12.
Article in English | MEDLINE | ID: mdl-36810408

ABSTRACT

This study investigates biomimetic sensors for the detection of methotrexate contaminants in environmental samples. Sensors inspired by biological systems are the focus of this biomimetic strategy. Methotrexate is an antimetabolite that is widely used for the treatment of cancer and autoimmune diseases. Due to the widespread use of methotrexate and its rampant disposal into the environment, the residues of this drug are regarded as an emerging contaminant of huge concern, considering that exposure to the contaminant has been found to lead to the inhibition of some essential metabolic processes, posing serious risks to humans and other living beings. In this context, this work aims to quantify methotrexate through the application of a highly efficient biomimetic electrochemical sensor constructed using polypyrrole-based molecularly imprinted polymer (MIP) electrodeposited by cyclic voltammetry on a glassy carbon electrode (GCE) modified with multi-walled carbon nanotubes (MWCNT). The electrodeposited polymeric films were characterized by infrared spectrometry (FTIR), scanning electron microscopy (SEM), and cyclic voltammetry (CV). The analyses conducted using differential pulse voltammetry (DPV) yielded a detection limit of 2.7 × 10-9 mol L-1 for methotrexate, a linear range of 0.01-125 µmol L-1, and a sensitivity of 0.152 µA L mol-1. The results obtained from the analysis of the selectivity of the proposed sensor through the incorporation of interferents in the standard solution pointed to an electrochemical signal decay of only 15.4%. The findings of this study show that the proposed sensor is highly promising and suitable for use in the quantification of methotrexate in environmental samples.

9.
Anal Methods ; 15(4): 482-491, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36606573

ABSTRACT

We have developed a sensing system that utilizes a low-cost computer (Raspberry Pi) and its imaging camera as an optical sensing core for the continuous detection of NO2 in the air (PiSENS-A). The sensor is based on colour development as a consequence of the interaction of the gas with an absorbing solution. The PiSENS-A is thoroughly calibrated over the hourly mean which is used as one of the key metrics in evaluating air quality. The calibration was performed in the range of 0 < [NO2] < 476 µg m-3 chosen to contain the threshold used to determine compliance to the UK's Air Quality Standard Regulations (2010) expressed as a maximum of 18 permitted exceedances of [NO2]hourly mean = 200 µg per m3 per year. Lab-based measurements were evaluated against UV-vis. The average precision expressed as a relative standard deviation was: RSD% = 2.8%, while the correlation of mock samples was excellent (Pearson's r = 1.000). Field-based measurements were evaluated against chemiluminescence-based instrument exhibiting a correlation coefficient of R2 = 0.993. The PiSENS-A was also deployed as an independent air quality analyser at the Keele University campus.

10.
Biosensors (Basel) ; 12(6)2022 May 30.
Article in English | MEDLINE | ID: mdl-35735524

ABSTRACT

Methylmercury (MeHg) is one of the most toxic organic mercury compounds found in the environment. The continuous exposure of human beings to this highly toxic compound may damage their nervous system. The present work reports the development and application of a novel electrochemical sensing technique for the quantification of MeHg using a modified carbon paste electrode with multi-walled carbon nanotubes (MWCNTs) combined with ion imprinted polymer, which is highly selective toward MeHg (CPE/MWCNTs/IIP-MeHg) detection. The ion imprinted polymer was synthesized using 2-mercaptobenzothiazole (MBT), acrylic acid (AA) and MeHg employed as ligand, functional monomer and template ion, respectively, and the synthesized material was characterized by Raman spectroscopy and SEM-EDX. Both the proposed and control sensors were characterized by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The electrochemical measurements were carried out using differential pulse stripping voltammetry (DPSV), and a well-defined anodic peak observed at about +0.138 V (vs. Ag/AgCl) was recorded for MeHg. The application of the CPE/MWCNTs/IIP-MeHg sensor (which increased the charge transfer on the electrode surface) under the DPSV-based electrochemical method (which enhanced the signal intensity) made the detection technique highly sensitive and selective for the quantification of methylmercury. Under optimum experimental conditions, the proposed sensor exhibited a linear response range of 560-610 µg L-1 and a detection limit of 0.538 µg L-1, with acceptable relative error values ≤1% when applied for the detection of MeHg in real water samples.


Subject(s)
Methylmercury Compounds , Molecular Imprinting , Nanotubes, Carbon , Electrochemical Techniques/methods , Electrodes , Humans , Limit of Detection , Nanotubes, Carbon/chemistry , Polymers/chemistry , Water
11.
Front Chem ; 9: 615602, 2021.
Article in English | MEDLINE | ID: mdl-33816435

ABSTRACT

This work describes an electrochemical sensor for the selective recognition and quantification of amoxicillin and a ß-lactam antibiotic in real samples. This sensor consists of a carbon paste electrode (CPE) modified with mag-MIP (magnetic molecularly imprinted polymer), which was prepared by precipitation method via free radical using acrylamide (AAm) as functional monomer, N,N'-methylenebisacrylamide (MBAA) as a crosslinker, and potassium persulfate (KPS) as initiator, to functionalized magnetic nanoparticles. The magnetic non-imprinted polymers (mag-NIP) were prepared using the same experimental procedure without analyte and used for the preparation of a CPE for comparative studies. The morphological, structural, and electrochemical characteristics of the nanostructured material were evaluated using Field emission gun scanning electron microscopy (FEG-SEM), Transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), Vibrating sample magnetometry (VSM), X-ray diffraction (XRD), and voltammetric technique. Electrochemical experiments performed by square wave voltammetry show that the mag-MIP/CPE sensor had a better signal response compared to the non-imprinted polymer-modified electrode (mag-NIP/CPE). The sensor showed a linear range from 2.5 to 57 µmol L-1 of amoxicillin (r 2 = 0.9964), with a limit of detection and a limit of quantification of 0.75 and 2.48 µmol L-1, respectively. No significant interference in the electrochemical signal of amoxicillin was observed during the testing experiments in real samples (skimmed milk and river water). The proposed mag-MIP/CPE sensor could be used as a good alternative method to confront other techniques to determine amoxicillin in different samples.

12.
Anal Chim Acta ; 1159: 338443, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33867037

ABSTRACT

The present work shows the synergistic application of reflectance spectroscopy and core-shell molecularly imprinted polymer (MIP) for rapid quantification of tartrazine in soft drinks. Studies evaluated the performance of the MIPs synthesized in the presence of silica nanoparticles unfunctionalized and functionalized with [3-(methacryloyloxy)propyl]trimethoxysilane. Although the use of functionalized silica nanoparticles promoted the highest adsorption capability of tartrazine, the material was found to be less selective when it was applied in real samples. Interestingly, the most accurate results were obtained via the application of the MIP synthesized in the presence of unfunctionalized silica nanoparticles (SiO2@MIP). The optimized core-shell MIP was also characterized by Raman spectroscopy and scanning electron microscopy. The use of direct reflectance spectroscopy in the analyte detection strategy after the template extraction from the MIPs resulted in faster and more accurate results than conventional UV-Visible spectroscopy. With regard to the analysis of the soft drink samples, no significant differences were found between the results obtained from the proposed reflectance spectroscopy-based technique and those obtained from the comparative high-performance liquid chromatography technique. Under optimized conditions, this method displayed a linear range of 1.0-12.5 µmol L-1 with LOD and LOQ values of 0.303 and 1.0 µmol L-1, respectively. The selectivity factor (ß) ranged between 1.4 up to 264 showed better recognition of tartrazine in front of other dyes. Based on the results obtained, the proposed method is found to be suitable for rapid determination of tartrazine in food samples with complex matrices without the need of applying tedious sample preparation and cost-demanding instruments.


Subject(s)
Molecular Imprinting , Nanoparticles , Adsorption , Carbonated Beverages , Polymers , Silicon Dioxide , Tartrazine
13.
Sensors (Basel) ; 21(2)2021 Jan 09.
Article in English | MEDLINE | ID: mdl-33435484

ABSTRACT

Gas sensors are fundamental for continuous online monitoring of volatile organic compounds. Gas sensors based on semiconductor materials have demonstrated to be highly competitive, but are generally made of expensive materials and operate at high temperatures, which are drawbacks of these technologies. Herein is described a novel ethanol sensor for room temperature (25 °C) measurements based on hematite (α­Fe2O3)/silver nanoparticles. The AgNPs were shown to increase the oxide semiconductor charge carrier density, but especially to enhance the ethanol adsorption rate boosting the selectivity and sensitivity, thus allowing quantification of ethanol vapor in 2-35 mg L-1 range with an excellent linear relationship. In addition, the α-Fe2O3/Ag 3.0 wt% nanocomposite is cheap, and easy to make and process, imparting high perspectives for real applications in breath analyzers and/or sensors in food and beverage industries. This work contributes to the advance of gas sensing at ambient temperature as a competitive alternative for quantification of conventional volatile organic compounds.

14.
Nanomaterials (Basel) ; 10(12)2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33348754

ABSTRACT

Methylmercury (MeHg+) is a mercury species that is very toxic for humans, and its monitoring and sorption from environmental samples of water are a public health concern. In this work, a combination of theory and experiment was used to rationally synthesize an ion-imprinted polymer (IIP) with the aim of the extraction of MeHg+ from samples of water. Interactions among MeHg+ and possible reaction components in the pre-polymerization stage were studied by computational simulation using density functional theory. Accordingly, 2-mercaptobenzimidazole (MBI) and 2-mercaptobenzothiazole (MBT), acrylic acid (AA) and ethanol were predicted as excellent sulfhydryl ligands, a functional monomer and porogenic solvent, respectively. Characterization studies by scanning electron microscopy (SEM) and Brunauer-Emmett-Teller (BET) revealed the obtention of porous materials with specific surface areas of 11 m2 g-1 (IIP-MBI-AA) and 5.3 m2 g-1 (IIP-MBT-AA). Under optimized conditions, the maximum adsorption capacities were 157 µg g-1 (for IIP-MBI-AA) and 457 µg g-1 (for IIP-MBT-AA). The IIP-MBT-AA was selected for further experiments and application, and the selectivity coefficients were MeHg+/Hg2+ (0.86), MeHg+/Cd2+ (260), MeHg+/Pb2+ (288) and MeHg+/Zn2+ (1510), highlighting the material's high affinity for MeHg+. The IIP was successfully applied to the sorption of MeHg+ in river and tap water samples at environmentally relevant concentrations.

15.
Environ Res ; 187: 109669, 2020 08.
Article in English | MEDLINE | ID: mdl-32445943

ABSTRACT

Two new ionic imprinted hybrid polymers (IIHP) and their corresponding non imprinted hybrid polymers (NIHP) were synthesized. The prepared IIHP was highly selective to Cd2+. To prepare the IIHP, 1-vinylimidazole (VIN) was used as the functional monomer, (3-mercaptopropyl) trimethoxysilane (MP) or (3-aminopropyl) trimethoxysilane (AMP) was used as the functional organosilane, trimethylolpropane (TRIM) was used as the crosslinking agent, AIBN was used as a radical initiator and TEOS was used as a functional precursor. The functional monomer was selected considering calculations based on the density functional theory (DFT). The fabricated materials were characterized via field emission gun scanning electron microscopy (FEG-SEM), Fourier transform infrared spectroscopy (FTIR), energy dispersive X-ray spectroscopy (EDX) and thermogravimetric analysis (TGA). The maximum adsorption capacity of Cd2+ was achieved at a pH of 7.2 in the tris-HCl medium. The adsorption test indicated that the reaction followed pseudo second order kinetics, and the equilibrium sorption data fitted well into the Langmuir isotherm model. The relative selectivity coefficients of polymers IIHP-VIN-AMP and IIHP-VIN-MP, as evaluated in binary mixtures of Cd2+ and interferent cations (Pb2+, Zn2+, Hg2+, Cu2+, Ni2+, Ca2+, Mg2+, and Na+) at different molar ratios, were greater than one due to the presence of specific recognition sites for Cd2+ ions. Moreover, the selective materials exhibited a high reusability and reproducibility in the context of Cd2+ adsorption. These adsorbent materials, specifically IIHP-VIN-MP, exhibited a % removal efficiency of more than 90% for the Cd2+ in river water samples.


Subject(s)
Polymers , Water Pollutants, Chemical , Adsorption , Cadmium , Hydrogen-Ion Concentration , Ions , Kinetics , Reproducibility of Results , Spectroscopy, Fourier Transform Infrared
16.
J Hazard Mater ; 384: 121374, 2020 02 15.
Article in English | MEDLINE | ID: mdl-31672437

ABSTRACT

A molecularly imprinted polymer (MIP) was developed for the determination of acid violet 19 (AV19) dye. The MIP was synthesized by polymerization using 1-vinyl imidazole (functional monomer) and 2,2'-azobis(2-methylpropionitrile) as the radical initiator. The functional monomer was previously selected by computational simulations. The MIP adsorption data could be fitted using the Langmuir model obtained a Qm value of 6.93 mg g-1 and 2.84 mg g-1 for the corresponding non-imprinted polymer (NIP) and the process followed pseudo-second-order kinetics (k2 0.2416 mg g-1 min-1 MIP). The BET specific surface areas were 229.6 m2 g-1 and 28.6 m² g-1, to MIP and NIP, respectively. Analyses showed that the material provided excellent selectivity towards acid violet 19 (AV19) when compared to other analytes including Acid Violet 17 (AV17), Tartrazine (TZ), Acid Red 14 (AR14), Patent blue-VF (PBV), Sunset yellow FCF (SY) and Acid Red 1 (AR1). The calculated Kd value for the MIP was 0.116 L g-1 and the imprinting factor was 2.89. This alternative and effective material for the enrichment, extraction, and determination of acid violet 19 presents in complex real samples was applied using two different rivers water and industrial effluent, with excellent recoveries values ranging between 85% up to 99%.

17.
Talanta ; 181: 19-23, 2018 May 01.
Article in English | MEDLINE | ID: mdl-29426499

ABSTRACT

The determination of 1-chloro-2,4-dinitrobenzene (CDNB) was used as a proof-of-concept to a simple analytical practical configuration applying magnetic molecularly imprinted particles (mag-MIPs). Mag-MIPs were captured from an emulsion by a home-made magneto-sensor (where a small magnet was entrapped by a graphite-epoxy composite) and then, this sensor, was transferred to the solution containing the analyte, where, after binding to the mag-MIPs, the analyte was directly analysed using differential pulse voltammetry (DPV) since the magneto-sensor acted as the working electrode. After optimization, a detection limit of 6.0 µmol L-1 with a RSD of 2.7% was achieved along with suitable recoveries and selectivity. This methodology offers a different approach for electroanalytical methodologies using mag-MIPs.

18.
Mater Sci Eng C Mater Biol Appl ; 74: 365-373, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28254306

ABSTRACT

Molecularly imprinted polymers (MIPs) in combination with magnetic nanoparticles, in a core@shell format, were studied for selective detection of 1-chloro-2,4-dinitrobenzene (CDNB), a powerful allergenic substance. Magnetic nanoparticles were prepared by the co-precipitation method and mixed with oleic acid (OA). This material was then encapsulated in three types of hydrophobic polymeric matrix, poly-(MA-co-EDGMA), poly-(AA-co-EDGMA), and poly-(1-VN-co-EDGMA), by the mini-emulsion method. These matrices were used due to their ability to interact specifically with the functional groups of the analyte. Finally, the MIP-CDNB was obtained on the magnetic-hydrophobic surfaces using precipitation polymerization in the presence of the analyte. XRD diffraction patterns suggested the presence of magnetite in the composite and SEM analysis revealed a nanoparticle size between 10 and 18nm. Under the optimized adsorption conditions, the magnetic-MIP material showed a higher adsorption capacity (5.1mgg-1) than its non-magnetic counterpart (4.2mgg-1). In tests of the selectivity of the magnetic-MIP towards CDNB, α-values of 2.5 and 10.4, respectively, were obtained for dichlorophenol and o-nitrophenol, two structurally similar compounds, and no adsorption was observed for any other non-analogous analyte. The magnetic-MIP and magnetic-NIP were applied using water enriched with 0.5mgL-1 of CDNB, achieving recovery values of 83.8(±0.8)% and 66(±1)%, respectively, revealing the suitability of the material for detection of CDNB.


Subject(s)
Allergens/analysis , Chromatography, High Pressure Liquid , Dinitrochlorobenzene/analysis , Magnetite Nanoparticles/chemistry , Molecular Imprinting , Polymers/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Oleic Acid/chemistry , Particle Size , Polymers/chemical synthesis , Porosity , Reproducibility of Results , X-Ray Diffraction
19.
Food Chem ; 190: 460-467, 2016 Jan 01.
Article in English | MEDLINE | ID: mdl-26212997

ABSTRACT

This work presents an efficient method for the preparation of magnetic nanoparticles modified with molecularly imprinted polymers (Mag-MIP) through core-shell method for the determination of biotin in milk food samples. The functional monomer acrylic acid was selected from molecular modeling, EGDMA was used as cross-linking monomer and AIBN as radical initiator. The Mag-MIP and Mag-NIP were characterized by FTIR, magnetic hysteresis, XRD, SEM and N2-sorption measurements. The capacity of Mag-MIP for biotin adsorption, its kinetics and selectivity were studied in detail. The adsorption data was well described by Freundlich isotherm model with adsorption equilibrium constant (KF) of 1.46 mL g(-1). The selectivity experiments revealed that prepared Mag-MIP had higher selectivity toward biotin compared to other molecules with different chemical structure. The material was successfully applied for the determination of biotin in diverse milk samples using HPLC for quantification of the analyte, obtaining the mean value of 87.4% recovery.


Subject(s)
Biotin/analysis , Magnetics , Milk/chemistry , Molecular Imprinting/methods , Polymers/chemistry , Adsorption , Animals , Chromatography, High Pressure Liquid , Hydrogen-Ion Concentration , Microscopy, Electrochemical, Scanning , Nanoparticles , Spectroscopy, Fourier Transform Infrared
SELECTION OF CITATIONS
SEARCH DETAIL
...