Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 16(8)2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38675066

ABSTRACT

Plastic pollution poses a significant environmental challenge, necessitating the investigation of bioplastics with reduced end-of-life impact. This study systematically characterizes four promising bioplastics-polybutylene adipate terephthalate (PBAT), polybutylene succinate (PBS), poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV), and polylactic acid (PLA). Through a comprehensive analysis of their chemical, thermal, and mechanical properties, we elucidate their structural intricacies, processing behaviors, and potential morphologies. Employing an environmentally friendly process utilizing supercritical carbon dioxide, we successfully produced porous materials with microcellular structures. PBAT, PBS, and PLA exhibit closed-cell morphologies, while PHBV presents open cells, reflecting their distinct overall properties. Notably, PBAT foam demonstrated an average porous area of 1030.86 µm2, PBS showed an average porous area of 673 µm2, PHBV displayed open pores with an average area of 116.6 µm2, and PLA exhibited an average porous area of 620 µm2. Despite the intricacies involved in correlating morphology with material properties, the observed variations in pore area sizes align with the findings from chemical, thermal, and mechanical characterization. This alignment enhances our understanding of the morphological characteristics of each sample. Therefore, here, we report an advancement and comprehensive research in bioplastics, offering deeper insights into their properties and potential morphologies with an easy sustainable foaming process. The alignment of the process with sustainability principles, coupled with the unique features of each polymer, positions them as environmentally conscious and versatile materials for a range of applications.

2.
Polymers (Basel) ; 15(17)2023 Aug 24.
Article in English | MEDLINE | ID: mdl-37688156

ABSTRACT

Nowadays, fluorophores with a tetraphenylethylene (TPE) core are considered interesting due to the aggregation-induced emission (AIE) behavior that enables their effective use in polymer films. We propose a novel TPE fluorophore (TPE-BPAN) bearing two dimethylamino push and a 4-biphenylacetonitrile pull moieties with the typical AIE characteristics in solution and in the solid state, as rationalized by DFT calculations. Five different host polymer matrices with different polarity have been selected: two homopolymers of poly(methylmethacrylate) (PMMA) and poly(cyclohexyl methacrylate) (PCHMA) and three copolymers at different compositions (P(MMA-co-CHMA) 75:25, 50:50, and 25:75 mol%). The less polar comonomer of CHMA appeared to enhance TPE-BPAN emission with the highest quantum yield (QY) of about 40% measured in P(MMA-co-CHMA) 75:25. Further reduction in polymer polarity lowered QY and decreased the film stability and adhesion to the glass surface. LSC performances were not significantly affected by the matrix's polarity and resulted in around one-third of the state-of-the-art due to the reduced QY of TPE-BPAN. The theoretical investigation based on density functional theory (DFT) calculations clarified the origin of the observed AIE and the role played by the environment in modulating the photophysical behavior.

3.
Soft Robot ; 10(4): 852-859, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36927095

ABSTRACT

Soft actuators that operate with overpressure have been successfully implemented as soft robotic grippers. Naturally, as these pneumatic devices are prone to cuts, self-healing properties are attractive. Here, we prepared a gripper that operates based on the liquid-gas phase transition of ethanol within its hollow structure. The gripping surface of the device is coated with a self-healing polymer that heals with heat. This gripper also includes a stainless steel wire along the device that heats the entire structure through resistive heating. This design results in a soft robotic gripper that actuates and heals in parallel driven by the same practical stimulus, that is, electricity. Compared to other self-healing soft grippers, this approach has the advantage of being simple and having autonomous self-healing. However, there remain fundamental drawbacks that limit its implementation. The current work critically assesses this overpressure approach and concludes with a broad perspective regarding self-healing soft robotic grippers.

4.
Polymers (Basel) ; 15(4)2023 Feb 17.
Article in English | MEDLINE | ID: mdl-36850295

ABSTRACT

Alginate dialdehyde and l-lysine-functionalized alginate dialdehyde were prepared to provide active aldehyde and l-lysine sites along the alginate backbone, respectively. Different concentrations of substrates and the reduction agent were added, and their influence on the degree of l-lysine substitution was evaluated. An amination reduction reaction (with l-lysine) was conducted on alginate dialdehyde with a 31% degree of oxidation. The NMR confirmed the presence of l-lysine functionality with the degree of substitution of 20%. The structural change of the polymer was observed via FTIR spectroscopy, confirming the formation of Schiff base covalent linkage after the crosslinking. The additional l-lysine sites on functionalized alginate dialdehyde provide more crosslinking sites on the hydrogel, which leads to a higher modulus storage rate than in the original alginate dialdehyde. This results in dynamic covalent bonds, which are attributed to the alginate derivative-gelatin hydrogels with shear-thinning and self-healing properties. The results suggested that the concentration and stoichiometric ratio of alginate dialdehyde, l-lysine-functionalized alginate dialdehyde, and gelatin play a fundamental role in the hydrogel's mechanical properties.

5.
RSC Adv ; 12(54): 35358-35366, 2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36540247

ABSTRACT

The COVID-19 pandemic has further confirmed to the community that direct contact with contaminated surfaces and objects represents an important source of pathogen spreading among humans. Therefore, it is of paramount importance to design effective germicidal paints to ensure a rapid and potent disinfectant action of surfaces. In this work, we design novel germicide polymeric coatings by inserting quaternary ammonium and sugar groups on the macromolecular backbone, thus respectively endowing the polymer with germicide features and hydrophilicity to interact with the surfaces. An aliphatic polyketone was selected as a starting polymer matrix that was functionalized with primary amine derivatives via the Paal-Knorr reaction. The resulting polymers were deposited on cellulose filter papers and checkboard charts with excellent coating yield and substrate coverage as determined by scanning electron microscopy for cellulose. Remarkably, the substrates coated by the functional polymers bearing quaternary ammonium compounds showed excellent bactericide properties with antibacterial rate of 99% and logarithmic reduction of >3. Notably, the polymers with higher hydrophobicity showed better retention on the substrate after being treated with water at neutral pH.

6.
Polymers (Basel) ; 14(11)2022 May 28.
Article in English | MEDLINE | ID: mdl-35683871

ABSTRACT

In this work, two novel routes to synthesis cross-linked polypropylene (PP) are introduced by using two different precursors (2-thiophenemethyl amine (TMA) and 1-(3 aminopropyl) imidazole (API)), both cross-linked with 1,1'-(methylenedi-4,1-phenylene) bismaleimide (BM) at two different annealing temperature values (T = 50 °C and T = 150 °C). Both Diels-Alder (DA) and Michael addition reactions were successfully performed with TMA and API, respectively, albeit with different reactivity. Imidazole clearly shows a higher reactivity compared to thiophene. In addition, an increase in annealing temperature leads to a higher degree of cross-linking. The highest degree of cross-linking was obtained by the imidazole product after annealing at 150 °C (IMG1A150) as evident from the highest complex viscosity (|η*|) value of IMG1A150. A difference in rheology and thermal properties between the imidazole and thiophene cross-linked products was also observed. However, both products have superior melt properties and thermal stability compared with the starting material. They show processability at high temperatures. The melt flow behavior and de-cross-linking at higher temperatures can be tuned depending on the choice of imidazole or thiophene. This study shows an advance on the cross-linked PP processing and its product performances for further application on the commercial scale.

7.
Macromol Rapid Commun ; 43(13): e2200045, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35581933

ABSTRACT

A biorenewable polymer is synthesized via a green process using the RAFT principle for the first time in supercritical CO2 at 300 bar and 80 °C. α-Methylene-γ-butyrolactone polymers of various chain lengths and molecular weights are obtained. The molecular weights vary from 10 000 up to 20 000 with low polydispersity indexes (PDI <1.5). Furthermore, the monomer conversion in supercritical CO2 is substantially higher, respectively 85% for ScCO2 compared to ≈65% for polymerizations conducted in dimethyl formamide (DMF) solvent. Chain extensions are carried out to confirm the livingness of the formed polymers in ScCO2 . This opens up future possibilities of the formation of different polymer architectures in ScCO2 . The polymers synthesized in ScCO2 have glass transition temperature (Tg ) values ranging from 155 up to 190 °C. However, the presence of residual monomer encapsulated inside the formed polymer matrix affects the glass transition of the polymer that is lowered by increasing monomer concentrations. Hence, additional research is required to eliminate the remaining monomer concentration in the polymer matrix in order to arrive at the optimal Tg .


Subject(s)
Carbon Dioxide , Polymers , Molecular Weight , Polymerization , Temperature
8.
Macromol Rapid Commun ; 43(13): e2200023, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35238107

ABSTRACT

The purpose of this review is to critically assess the kinetic behavior of the furan/maleimide Diels-Alder click reaction. The popularity of this reaction is evident and still continues to grow, which is likely attributed to its reversibility at temperatures above 100 °C, and due to its biobased "roots" in terms of raw materials. This chemistry is used to form thermoreversible crosslinks in polymer networks, and thus allows the polymer field to design strong, but also end-of-life recyclable thermosets and rubbers. In this context, the rate at which the forward reaction (Diels-Alder for crosslinking) and its reverse (retro Diels-Alder for decrosslinking) proceed as a function of temperature is of crucial importance in assessing the feasibility of the design in real-life products. Differences in kinetics based from various studies are not well understood, but are potentially caused by chemical side groups, mass transfer limitations, and the analysis methods being employed. In this work, all the relevant studies are attempted to be placed in perspective with respect to each other, and thereby offer a general guide is offered on how to assess their recycling kinetics.


Subject(s)
Polymers , Rubber , Cycloaddition Reaction , Kinetics , Temperature
9.
Polymers (Basel) ; 14(6)2022 Mar 15.
Article in English | MEDLINE | ID: mdl-35335509

ABSTRACT

In this work, the possibility of preparing cross-linked polypropylene (PP) via Diels−Alder (DA) chemistry is explored. The overall strategy involves reaction of maleated polypropylene (the starting material), furfuryl amine (FFA), and bismaleimide (BM) as the cross-linking agent. The occurrence of reversible cross-linking was studied by checking the presence of relevant peaks in FTIR spectra, i.e., CH out-of-plane bending vibrations of the furan ring's peak (γCH) at an absorption band of 730−734 cm−1, CH=CH of the BM aromatic ring's stretching vibrations (υCH=CH) at an absorption band of 1510 cm−1, and the DA adduct (C-O-C, δDAring) at an absorption band of 1186 cm−1. In agreement with the spectroscopic characterization, the presence of a cross-linked network is also confirmed by rheology, namely the higher storage modulus (G') compared with loss modulus (G″) value (G' >> G″), as obtained via temperature sweep. Both the maleic anhydride (MA) content as well as the annealing temperature (50 °C and 120 °C) favor the DA reaction, while only partial de-cross-linking (retro DA) is observed at the higher temperature range of 150−200 °C. In addition, the products show higher mechanical robustness and thermal stability compared to the starting material.

10.
Langmuir ; 38(1): 182-190, 2022 01 11.
Article in English | MEDLINE | ID: mdl-34913697

ABSTRACT

Micrometer-sized double emulsions and antibubbles were produced and stabilized via the Pickering mechanism by colloidal interfacial layers of polymeric nanoparticles (NPs). Two types of nanoparticles, consisting either of polylactic acid (PLA) or polylactic-co-glycolic acid (PLGA), were synthesized by the antisolvent technique without requiring any surfactant. PLA nanoparticles were able to stabilize water-in-oil (W/O) emulsions only after tuning the hydrophobicity by means of a thermal treatment. A water-in-oil-in-water (W/O/W) emulsion was realized by emulsifying the previous W/O emulsion in a continuous water phase containing hydrophilic PLGA nanoparticles. Both inner and outer water phases contained a sugar capable of forming a glassy phase, while the oil was crystallizable upon freezing. Freeze drying the double emulsion allowed removing the oil and water and replacing them with air without losing the three-dimensional (3D) structure of the original emulsion owing to the sugar glassy phase. Reconstitution of the freeze-dried double emulsion in water yielded a dispersion of antibubbles, i.e., micrometric bubbles containing aqueous droplets, with the interfaces of the antibubbles being stabilized by a layer of adsorbed polymeric nanoparticles. Remarkably, it was possible to achieve controlled release of a flourescent probe (calcein) from the antibubbles through heating to 37 °C leading to bursting of the antibubbles.


Subject(s)
Nanoparticles , Emulsions , Glycolates , Polyesters
11.
Gels ; 7(4)2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34940315

ABSTRACT

Hydrogels have gained a lot of attention with their widespread use in different industrial applications. The versatility in the synthesis and the nature of the precursor reactants allow for a varying range of hydrogels with different mechanical and rheological properties. Understanding of the rheological behavior and the relationship between the chemical structure and the resulting properties is crucial, and is the focus of this review. Specifically, we include detailed discussion on the correlation between the rheological characteristics of hydrogels and their possible applications. Different rheological tests such as time, temperature and frequency sweep, among others, are described and the results of those tests are reported. The most prevalent applications of hydrogels are also discussed.

12.
ACS Omega ; 6(21): 13847-13857, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34095677

ABSTRACT

Oxidized starch can be efficiently prepared using H2O2 as an oxidant and iron(III) tetrasulfophthalocyanine (FePcS) as a catalyst, with properties in the same range as those for commercial oxidized starches prepared using NaOCl. Herein, we performed an in-depth study on the oxidation of potato starch focusing on the mode of operation of this green catalytic system and its fate as the reaction progresses. At optimum batch reaction conditions (H2O2/FePcS molar ratio of 6000, 50 °C, and pH 10), a high product yield (91 wt %) was obtained with substantial degrees of substitution (DSCOOH of 1.4 and DSCO of 4.1 per 100 AGU) and significantly reduced viscosity (197 mPa·s) by dosing H2O2. Model compound studies showed limited activity of the catalyst for C6 oxidation, indicating that carboxylic acid incorporation likely results from C-C bond cleavage events. The influence of the process conditions on the stability of the FePcS catalyst was studied using UV-vis and Raman spectroscopic techniques, revealing that both increased H2O2 concentration and temperature promote the irreversible degradation of the FePcS catalyst at high pH. The rate and extent of FePcS degradation were found to strongly depend on the initial H2O2 concentration where also the rapid decomposition of H2O2 by FePcS occurs. These results explain why the slow addition of H2O2 in combination with low FePcS catalyst concentration is beneficial for the efficient application in starch oxidation.

13.
Molecules ; 26(8)2021 Apr 13.
Article in English | MEDLINE | ID: mdl-33924288

ABSTRACT

Polymers crosslinked via furan/maleimide thermo-reversible chemistry have been extensively explored as reprocessable and self-healing thermosets and elastomers. For such applications, it is important that the thermo-reversible features are reproducible after many reprocessing and healing cycles. Therefore, side reactions are undesirable. However, we have noticed irreversible changes in the mechanical properties of such materials when exposing them to temperatures around 150 °C. In this work, we study whether these changes are due to the self-reaction of maleimide moieties that may take place at this rather low temperature. In order to do so, we prepared a furan-grafted polyketone crosslinked with the commonly used aromatic bismaleimide (1,1'-(methylenedi-4,1-phenylene)bismaleimide), and exposed it to isothermal treatments at 150 °C. The changes in the chemistry and thermo-mechanical properties were mainly studied by infrared spectroscopy, 1H-NMR, and rheology. Our results indicate that maleimide self-reaction does take place in the studied polymer system. This finding comes along with limitations over the reprocessing and self-healing procedures for furan/maleimide-based reversibly crosslinked polymers that present their softening (decrosslinking) point at relatively high temperatures. On the other hand, the side reaction can also be used to tune the properties of such polymer products via in situ thermal treatments.

14.
Polymers (Basel) ; 13(4)2021 Feb 22.
Article in English | MEDLINE | ID: mdl-33671610

ABSTRACT

Nowadays, the self-healing approach in materials science mainly relies on functionalized polymers used as matrices in nanocomposites. Through different physicochemical pathways and stimuli, these materials can undergo self-repairing mechanisms that represent a great advantage to prolonging materials service-life, thus avoiding early disposal. Particularly, the use of the Joule effect as an external stimulus for self-healing in conductive nanocomposites is under-reported in the literature. However, it is of particular importance because it incorporates nanofillers with tunable features thus producing multifunctional materials. The aim of this review is the comprehensive analysis of conductive polymer nanocomposites presenting reversible dynamic bonds and their energetical activation to perform self-healing through the Joule effect.

15.
Polymers (Basel) ; 13(3)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494537

ABSTRACT

Among smart materials, self-healing is one of the most studied properties. A self-healing polymer can repair the cracks that occurred in the structure of the material. Polyketones, which are high-performance thermoplastic polymers, are a suitable material for a self-healing mechanism: a furanic pendant moiety can be introduced into the backbone and used as a diene for a temperature reversible Diels-Alder reaction with bismaleimide. The Diels-Alder adduct is formed at around 50 °C and broken at about 120 °C, giving an intrinsic, stimuli-responsive self-healing material triggered by temperature variations. Also, reduced graphene oxide (rGO) is added to the polymer matrix (1.6-7 wt%), giving a reversible OFF-ON electrically conductive polymer network. Remarkably, the electrical conductivity is activated when reaching temperatures higher than 100 °C, thus suggesting applications as electronic switches based on self-healing soft devices.

16.
RSC Adv ; 11(56): 35187-35196, 2021 Oct 28.
Article in English | MEDLINE | ID: mdl-35493154

ABSTRACT

Polymers are an increasingly used class of materials in semiconductors, photovoltaics and energy storage. Polymers bearing triphenylamine (TPA) or its derivatives in their structures have shown promise for application in electrochemical energy storage devices. The aim of this work is to systematically synthesize polymers bearing TPA units either as pendant groups or directly along the backbone of the polymer and evaluate their performance as electrochemical energy storage electrode materials. The first was obtained via radical polymerization of an acrylate monomer bearing TPA as a side group, resulting in a non-conjugated polymer with individual redox active sites (rP). The latter was obtained by oxidative polymerization of a substituted TPA, resulting in a conjugated polymer with TPA units along its backbone (cP). These polymers were then developed into electrodes by separately blending them with multi-wall carbon nanotubes (rC and cC). The electrodes were characterized and their charge storage stability and mechanical properties were investigated for up to 1000 cycles by cyclic voltammetry, galvanostatic charge-discharge measurements and nanoindentation. The results show that cC offers a higher initial charge capacity than rC as well as improved carbon nanotube dispersion due to its conjugated structure. Although the improved dispersion results in a higher elastic modulus for cC (compared to rC), the stiffer nature of cP made it more vulnerable to degrade upon repetitive volumetric change, while with rP, the decoupled acrylate monomer remained more protected when its redox active units of TPA underwent charge-discharge cycling.

17.
ACS Omega ; 5(47): 30454-30460, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-33283093

ABSTRACT

In this paper, we present the formation of reversible covalently cross-linked networks in ethylene propylene rubber with grafted anthracene groups (EPM-g-AN) based on the principles of photoinduced anthracene dimerization. First, an industrial-grade EPM rubber grafted with maleic anhydride functional groups (EPM-g-MA) was modified with 9-anthracenemethanol. By irradiating EPM-g-AN with UV light (365 nm), the anthracene moieties dimerize via [4 + 4]cycloaddition, forming a covalent network. The network cleavage proceeds at high temperatures (>170 °C), even if with considerable (chemical) degradation. Furthermore, one of the degradation routes has been identified by 1H NMR to occur via the ester bond cleavage releasing 9-anthracenemethanol. Nevertheless, the reversibility of cross-linking has been achieved by performing the reverse reaction in decalin. The UV-vis spectroscopy clearly shows that the de-cross-linking process in these conditions is due to the anthracene dimer cleavage. Although the recovery in mechanical properties upon recycling is yet to be optimized, the disclosed results pave the way toward the use of anthracene chemistry in thermally reversible networks with possible industrial perspective applications.

18.
Polymers (Basel) ; 12(9)2020 Sep 03.
Article in English | MEDLINE | ID: mdl-32899443

ABSTRACT

In this work, we prepared color-changing colloids by using the electrostatic self-assembly approach. The supramolecular structures are composed of a pH-responsive polymeric surfactant and the water-soluble porphyrin 5,10,15,20-tetrakis-(sulfonatophenyl)porphyrin (TPPS). The pH-responsive surfactant polymer was achieved by the chemical modification of an alternating aliphatic polyketone (PK) via the Paal-Knorr reaction with N-(2-hydroxyethyl)ethylenediamine (HEDA). The resulting polymer/dye supramolecular systems form colloids at the submicron level displaying negative zeta potential at neutral and basic pH, and, at acidic pH, flocculation is observed. Remarkably, the colloids showed a gradual color change from green to pinky-red due to the protonation/deprotonation process of TPPS from pH 2 to pH 12, revealing different aggregation behavior.

19.
Molecules ; 25(16)2020 Aug 10.
Article in English | MEDLINE | ID: mdl-32785147

ABSTRACT

A novel biobased monomer for the preparation of thermally reversible networks based on the Diels-Alder reaction was synthesized from jatropha oil. The oil was epoxidized and subsequently reacted with furfurylamine to attach furan groups via an epoxide ring opening reaction. However, furfurylamine also reacted with the ester groups of the triglycerides via aminolysis, thus resulting in short-chain molecules that ultimately yielded brittle thermally reversible polymers upon cross-linking via a Diels-Alder reaction. A full-factorial experimental design was used in finding the optimum conditions to minimize ester aminolysis and to maximize the epoxide ring opening reaction as well as the number of furans attached to the modified oil. The optimum conditions were determined experimentally and were found to be 80 °C, 24 h, 1:1 molar ratio, with 50 mol % of LiBr with respect to the modified oil, resulting in 35% of ester conversion, 99% of epoxide conversion, and an average of 1.32 furans/triglyceride. Ultimately, further optimization by a statistical approach led to an average of 2.19 furans per triglyceride, which eventually yielded a flexible network upon cross-linking via a Diels-Alder reaction instead of the brittle one obtained when the furan-functionalization reaction was not optimized.


Subject(s)
Furans/chemistry , Jatropha/chemistry , Plant Oils/chemistry , Bromides/chemistry , Catalysis , Cycloaddition Reaction , Epoxy Compounds/chemistry , Jatropha/metabolism , Lithium Compounds/chemistry , Temperature , Triglycerides/chemistry
20.
Polymers (Basel) ; 12(8)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751512

ABSTRACT

Low cross-link density thermally reversible networks were successfully synthesized from jatropha and sunflower oils. The oils were epoxidized and subsequently reacted with furfurylamine to attach furan groups onto the triglycerides, preferably at the epoxide sites rather than at the ester ones. Under the same reaction conditions, the modified jatropha oil retained the triglyceride structure more efficiently than its sunflower-based counterpart, i.e., the ester aminolysis reaction was less relevant for the jatropha oil. These furan-modified oils were then reacted with mixtures of aliphatic and aromatic bismaleimides, viz. 1,12-bismaleimido dodecane and 1,1'-(methylenedi-4,1-phenylene)bismaleimide, resulting in a series of polymers with Tg ranging between 3.6 and 19.8 °C. Changes in the chemical structure and mechanical properties during recurrent thermal cycles suggested that the Diels-Alder and retro-Diels-Alder reactions occurred. However, the reversibility was reduced over the thermal cycles due to several possible causes. There are indications that the maleimide groups were homopolymerized and the Diels-Alder adducts were aromatized, leading to irreversibly cross-linked polymers. Two of the polymers were successfully applied as adhesives without modifications. This result demonstrates one of the potential applications of these polymers.

SELECTION OF CITATIONS
SEARCH DETAIL
...