Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Ergon ; 75: 1-7, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30509514

ABSTRACT

This study evaluated loading on the low back while wearing two commercially available postural assist exoskeletons. Ten male subjects lifted a box from multiple lift origins (combinations of vertical height and asymmetry) to a common destination using a squatting lifting technique with and without the use of either exoskeleton. Dependent measures included subject kinematics, moment arms between the torso or weight being lifted and the lumbar spine, and spinal loads as predicted by an electromyography-driven spine model. One of the exoskeletons tested (StrongArm Technologies™ FLx) reduced peak torso flexion at the shin lift origin, but differences in moment arms or spinal loads attributable to either of the interventions were not observed. Thus, industrial exoskeletons designed to control posture may not be beneficial in reducing biomechanical loads on the lumbar spine. Interventions altering the external manual materials handling environment (lift origin, load weight) may be more appropriate when implementation is fesible.


Subject(s)
Exoskeleton Device , Lifting , Lumbar Vertebrae/physiology , Posture , Weight-Bearing/physiology , Adult , Biomechanical Phenomena , Humans , Male , Range of Motion, Articular
SELECTION OF CITATIONS
SEARCH DETAIL
...