Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 26(9)2021 Apr 30.
Article in English | MEDLINE | ID: mdl-33946368

ABSTRACT

Spinel-structured solids were studied to understand if fast Li+ ion conduction can be achieved with Li occupying multiple crystallographic sites of the structure to form a "Li-stuffed" spinel, and if the concept is applicable to prepare a high mixed electronic-ionic conductive, electrochemically active solid solution of the Li+ stuffed spinel with spinel-structured Li-ion battery electrodes. This could enable a single-phase fully solid electrode eliminating multi-phase interface incompatibility and impedance commonly observed in multi-phase solid electrolyte-cathode composites. Materials of composition Li1.25M(III)0.25TiO4, M(III) = Cr or Al were prepared through solid-state methods. The room-temperature bulk Li+-ion conductivity is 1.63 × 10-4 S cm-1 for the composition Li1.25Cr0.25Ti1.5O4. Addition of Li3BO3 (LBO) increases ionic and electronic conductivity reaching a bulk Li+ ion conductivity averaging 6.8 × 10-4 S cm-1, a total Li-ion conductivity averaging 4.2 × 10-4 S cm-1, and electronic conductivity averaging 3.8 × 10-4 S cm-1 for the composition Li1.25Cr0.25Ti1.5O4 with 1 wt. % LBO. An electrochemically active solid solution of Li1.25Cr0.25Mn1.5O4 and LiNi0.5Mn1.5O4 was prepared. This work proves that Li-stuffed spinels can achieve fast Li-ion conduction and that the concept is potentially useful to enable a single-phase fully solid electrode without interphase impedance.

2.
Meteorit Planet Sci ; 55(4): 771-780, 2020 Apr.
Article in English | MEDLINE | ID: mdl-33273799

ABSTRACT

Previous studies attributed the origin of metal veins penetrating graphite nodules in the Canyon Diablo IAB main group iron meteorite to condensation from vapor or melting of host metal. Abundances of 16 siderophile elements measured in kamacite within vein and host meteorite are most consistent with an origin by melting of the host metal followed by fractional crystallization of the liquid. The presence of the veins within graphite nodules may be explained by impact, as peak shock temperatures, and thus the most likely areas to undergo metal melting, are at metal-graphite interfaces. The origin of the veins is constrained by Re-Os chronometry to have occurred early (>4 Ga) in Solar System history.

3.
Chemistry ; 24(21): 5630-5636, 2018 Apr 11.
Article in English | MEDLINE | ID: mdl-29359514

ABSTRACT

A bismuth-organic compound containing 2,2':6'2"-terpyridine (terpy) and 2-thiophenecarboxylate (TC), of the general formula (terpy)Bi(κ2 -TC)3 ⋅0.47 H2 O (BiOM-1), has been synthesized under hydrothermal conditions. Addition of a lanthanide nitrate solution to the reaction mixture led to statistical replacement of the bismuth centers, and yielded isomorphous lanthanide containing compounds Bi1-x Lnx OM-1 (Ln=Nd, Sm, Eu, Tb, Dy, Er, and Yb) that showed bismuth and/or ligand sensitized lanthanide-centered emission, and the first example of NIR emission from a lanthanide doped BiOM. The structure was determined by single-crystal X-ray diffraction, and the level and uniformity of lanthanide ion incorporation into the bismuth host was determined by ICP-OES and electron microprobe analysis. For the visible emitters, lifetime data and quantum yields are presented. A high efficiency of sensitization was calculated for the europium analog (50.1 %), showing significant improvement over previously reported europium thiophenecarboxylates. These novel materials may provide strategies to address concerns over the long-term sustainability of the rare earth elements, especially relating to optical devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...