Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 9640, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671026

ABSTRACT

Photoautotrophic cyanobacteria assimilate the greenhouse gas carbon dioxide as their sole carbon source for producing useful bioproducts. However, harvesting the cells from their liquid media is a major bottleneck in the process. Thus, an easy-to-harvest method, such as auto-flocculation, is desirable. Here, we found that cyanobacterium Synechocystis sp. PCC 6803 co-flocculated with a natural fungal contamination in the presence of the antibiotic erythromycin (EM) but not without EM. The fungi in the co-flocculated biomass were isolated and found to consist of five species with the filamentous Purpureocillium lilacinum and Aspergillus protuberus making up 71% of the overall fungal population. The optimal co-cultivation for flocculation was an initial 5 mg (fresh weight) of fungi, an initial cell density of Synechocystis of 0.2 OD730, 10 µM EM, and 14 days of cultivation in 100 mL of BG11 medium with no organic compound. This yielded 248 ± 28 mg/L of the Synechocystis-fungi flocculated biomass from 560 ± 35 mg/L of total biomass, a 44 ± 2% biomass flocculation efficiency. Furthermore, the EM treated Synechocystis cells in the Synechocystis-fungi flocculate had a normal cell color and morphology, while those in the axenic suspension exhibited strong chlorosis. Thus, the occurrence of the Synechocystis-fungi flocculation was mediated by EM, and the co-flocculation with the fungi protected Synechocystis against the development of chlorosis. Transcriptomic analysis suggested that the EM-mediated co-flocculation was a result of down-regulation of the minor pilin genes and up-regulation of several genes including the chaperone gene for pilin regulation, the S-layer protein genes, the exopolysaccharide-polymerization gene, and the genes for signaling proteins involved in cell attachment and abiotic-stress responses. The CuSO4 stress can also mediate Synechocystis-fungi flocculation but at a lower flocculation efficiency than that caused by EM. The EM treatment may be applied in the co-culture between other cyanobacteria and fungi to mediate cell bio-flocculation.


Subject(s)
Erythromycin , Flocculation , Synechocystis , Synechocystis/metabolism , Synechocystis/genetics , Erythromycin/pharmacology , Biomass , Coculture Techniques , Fungi/metabolism , Fungi/genetics
2.
World J Microbiol Biotechnol ; 39(1): 27, 2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36437374

ABSTRACT

Cyanobacteria accumulate polyglucan as main carbohydrate storage. Here, the cellular polyglucan content was determined in 27 cyanobacterial strains from 25 genera. The polyglucan contents were significantly enhanced in 20 and 23 strains under nitrogen (-N) and phosphate (-P) deprivation, respectively. High polyglucan accumulation was not associated with particular evolutionary groups but was strain specific. The highest polyglucan accumulations of 46.2% and 52.5% (w/w dry weight; DW) were obtained under -N in Synechocystis sp. PCC 6803 (hereafter Synechocystis) and Chroococcus limneticus, respectively. In Synechocystis, 80-97% (w/w) of the polyglucan was glycogen. Transcriptome and metabolome analyses during glycogen accumulation under -N were determined in Synechocystis. The genes responsible for the supply of the substrates for glycogen synthesis: glycerate-1,3-phosphate and fructose-1,6-phosphate, were significantly up-regulated. The genes encoding the enzymes converting succinate to malate in TCA cycle, were significantly down-regulated. The genes encoding the regulator proteins which inhibits metabolism at lower part of glycolysis pathway, were also significantly up-regulated. The transcript levels of PII protein and the level of 2-oxoglutarate, which form a complex that inhibits lower part of glycolysis pathway, were significantly increased. Thus, the increased Synechocystis glycogen accumulation under -N was likely to be mediated by the increased supply of glycogen synthesis substrates and metabolic inhibitions at lower part of glycolysis pathway and TCA cycle.


Subject(s)
Synechocystis , Synechocystis/genetics , Nitrogen , Nutrients , Phosphates , Glycogen
SELECTION OF CITATIONS
SEARCH DETAIL
...