Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech Eng ; 141(9)2019 Sep 01.
Article in English | MEDLINE | ID: mdl-31294748

ABSTRACT

Endovascular coil embolization is now widely used to treat cerebral aneurysms (CA) as an alternative to surgical clipping. It involves filling the aneurysmal sac with metallic coils to reduce flow, induce clotting, and promote the formation of a coil/thrombus mass which protects the aneurysm wall from hemodynamic forces and prevents rupture. However, a significant number of aneurysms are incompletely coiled leading to aneurysm regrowth and/or recanalization. Computational models of aneurysm coiling may provide important new insights into the effects of intrasaccular coil and thrombus on aneurysm wall stresses. Porcine blood and platinum coils were used to construct an in vitro coil thrombus mass (CTM) for mechanical testing. A uniaxial compression test was performed with whole blood clots and CTM, with coil packing densities (CPDs) of 10%, 20%, and 30% to obtain compressive stress/strain responses. A fourth-order polynomial mechanical response function was fit to the experimentally obtained stress/strain responses for each CPD in order to represent their mechanical properties for computational simulations. Patient-specific three-dimensional (3D) geometries of three aneurysms with simple geometry and four with complex geometry were reconstructed from digital subtraction angiography (DSA) images. The CPDs were digitally inserted in the aneurysm geometries and finite element modeling was used to determine transmural peak/mean wall stress (MWS) with and without coil packing. Reproducible stress/strain curves were obtained from compression testing of CTM and the polynomial mechanical response function was found to approximate the experimental stress/strain relationship obtained from mechanical testing to a high degree. An exponential increase in the CTM stiffness was observed with increasing CPD. Elevated wall stresses were found throughout the aneurysm dome, neck, and parent artery in simulations of the CAs with no filling. Complete, 100% filling of the aneurysms with whole blood clot and CPDs of 10%, 20%, and 30% significantly reduced MWS in simple and complex geometry aneurysms. Sequential increases in CPD resulted in significantly greater increases in MWS in simple but not complex geometry aneurysms. This study utilizes finite element analysis to demonstrate the reduction of transmural wall stress following coil embolization in patient-specific computational models of CAs. Our results provide a quantitative measure of the degree to which CPD impacts wall stress and suggest that complex aneurysmal geometries may be more resistant to coil embolization treatment. The computational modeling employed in this study serves as a first step in developing a tool to evaluate the patient-specific efficacy of coil embolization in treating CAs.

2.
J Biomech ; 74: 92-97, 2018 06 06.
Article in English | MEDLINE | ID: mdl-29728269

ABSTRACT

Nerve blocks are frequently performed by anesthesiologists to control pain. For sciatic nerve blocks, the optimal placement of the needle tip between its paraneural sheath and epineurial covering is challenging, even under ultrasound guidance, and frequently results in nerve puncture. We performed needle penetration tests on cadaveric isolated paraneural sheath (IPS), isolated nerve (IN), and the nerve with overlying paraneural sheath (NPS), and quantified puncture force requirement and fracture toughness of these specimens to assess their role in determining the clinical risk of nerve puncture. We found that puncture force (123 ±â€¯17 mN) and fracture toughness (45.48 ±â€¯9.72 J m-2) of IPS was significantly lower than those for NPS (1440 ±â€¯161 mN and 1317.46 ±â€¯212.45 Jm-2, respectively), suggesting that it is not possible to push the tip of the block needle through the paraneural sheath only, without pushing it into the nerve directly, when the sheath is lying directly over the nerve. Results of this study provide a physical basis for tangential placement of the needle as the ideal situation for local anesthetic deposition, as it allows for the penetration of the sheath along the edge of the nerve without entering the epineurium.


Subject(s)
Needles , Sciatic Nerve , Anesthetics, Local/administration & dosage , Biomechanical Phenomena , Humans , Injections , Nerve Block
3.
Cardiovasc Eng Technol ; 8(1): 70-80, 2017 03.
Article in English | MEDLINE | ID: mdl-27995569

ABSTRACT

Abdominal aortic aneurysm (AAA) is a degenerative disease of the aorta characterized by severe disruption of the structural integrity of the aortic wall and its major molecular constituents. From the early stages of disease, elastin in the aorta becomes highly degraded and is replaced by collagen. Questions persist as to the contribution of collagen content, quality and maturity to the potential for rupture. Here, using our recently developed Fourier transform infrared imaging spectroscopy (FT-IRIS) method, we quantified collagen content and maturity in the wall of AAA tissues in pairs of specimens with different wall stresses. CT scans of AAAs from 12 patients were used to create finite element models to estimate stress in different regions of tissue. Each patient underwent elective repair of the AAA, and two segments of the AAA tissues from anatomic regions more proximal or distal with different wall stresses were evaluated by histology and FT-IRIS after excision. For each patient, collagen content was generally greater in the tissue location with lower wall stress, which corresponded to the more distal anatomic regions. The wall stress/collagen ratio was greater in the higher stress region compared to the lower stress region (1.01 ± 1.09 vs. 0.55 ± 0.084, p = 0.02). The higher stress region also corresponded to the location with reduced intraluminal thrombus thickness. Further, collagen maturity tended to decrease with increased collagen content (p = 0.068, R = 0.38). Together, these results suggest that an increase in less mature collagen content in AAA patients does not effectively compensate for the loss of elastin in the aortic wall, and results in a reduced capability to endure wall stresses.


Subject(s)
Aorta, Abdominal/pathology , Aortic Aneurysm, Abdominal/diagnostic imaging , Collagen/metabolism , Spectroscopy, Fourier Transform Infrared/methods , Aorta, Abdominal/diagnostic imaging , Aorta, Abdominal/surgery , Aortic Aneurysm, Abdominal/metabolism , Aortic Aneurysm, Abdominal/physiopathology , Aortic Aneurysm, Abdominal/surgery , Collagen/analysis , Elastin/analysis , Elastin/metabolism , Extracellular Matrix/metabolism , Extracellular Matrix/pathology , Humans , Stress, Mechanical
4.
Soft Mater ; 14(2): 72-77, 2016.
Article in English | MEDLINE | ID: mdl-27795696

ABSTRACT

Current commercial tensile testing systems use spring-loaded or other compression-based grips to clamp materials in place posing a problem for very soft or delicate materials that cannot withstand this mechanical clamping force. In order to perform uniaxial tensile tests on soft tissues or materials, we have created a novel vacuum-assisted anchor (VAA). Fibrin gels were subjected to uniaxial extension, and the testing data was used to determine material mechanical properties. Utilizing the VAA, we achieved successful tensile breaks of soft fibrin gels while finding statistically significant differences between the mechanical properties of gels fabricated at two different fibrinogen concentrations.

5.
J Endourol ; 28(12): 1470-3, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25343358

ABSTRACT

BACKGROUND AND PURPOSE: Ureteral injuries such as avulsion are directly related to mechanical damage of the ureter. Understanding the tensile strength of this tissue may assist in prevention of iatrogenic injuries. Few published studies have looked at the mechanical properties of the animal ureter and, of those, none has determined the tensile strength of the human ureter. Therefore, the purpose of this work was to determine the tensile strength of the human ureter. METHODS: We harvested 11 human proximal ureters from patients who were undergoing nephrectomy for either kidney tumors or nonfunctioning kidney. The specimens were then cut into multiple circumferentially and longitudinally oriented tissue strips for tensile testing. Strips were uniaxially stretched to failure in a tensile testing machine. The corresponding force and displacement were recorded. Finally, stress at failure was noted as the tensile strength of the sample. Circumferential tensile strength was also compared in the proximal and distal regions of the specimens. RESULTS: The tensile strength of the ureter in circumferential and longitudinal orientations was found to be 457.52±33.74 Ncm(-2) and 902.43±122.08 Ncm(-2), respectively (P<0.001). The circumferential strength in the proximal portion of the ureter was 409.89±35.13 Ncm(-2) in comparison with 502.89±55.85 Ncm(-2) in the distal portion (P=0.08). CONCLUSIONS: The circumferential tensile strength of the ureter was found to be significantly lower than the longitudinal strength. Circumferential tensile strength was also lower with more proximal parts of the ureter. This information may be important for the design of "intelligent" devices and simulators to prevent complications.


Subject(s)
Tensile Strength/physiology , Ureter/physiology , Aged , Aged, 80 and over , Female , Humans , Male , Middle Aged , Nephrectomy
6.
Ann Thorac Surg ; 96(6): 2147-54, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24021768

ABSTRACT

BACKGROUND: Ascending thoracic aortic aneurysm (ATAA) predisposes patients to aortic dissection and has been associated with diminished tensile strength and disruption of collagen. Ascending thoracic aortic aneurysms arising in patients with bicuspid aortic valve (BAV) develop earlier than in those with tricuspid aortic valves (TAV) and have a different risk of dissection. The purpose of this study was to compare aortic wall tensile strength between BAV and TAV ATAAs and determine whether the collagen content of the ATAA wall is associated with tensile strength and valve phenotype. METHODS: Longitudinally and circumferentially oriented strips of ATAA tissue obtained during elective surgery were stretched to failure, and collagen content was estimated by hydroxyproline assay. Experimental stress-strain data were analyzed for failure strength and elastic mechanical variables: α, ß, and maximal tangential stiffness. RESULTS: The circumferential and longitudinal tensile strengths were higher for BAV ATAAs when compared with TAV ATAAs. The α and ß were lower for BAV ATAAs when compared with TAV ATAAs. The maximal tangential stiffness was higher for circumferential when compared with longitudinal orientation in both BAV and TAV ATAAs. The amount of hydroxyproline was equivalent in BAV and TAV ATAA specimens. Although there was a moderate correlation between the collagen content and tensile strength for TAV, this correlation is not present in BAV. CONCLUSIONS: The increased tensile strength and decreased values of α and ß in BAV ATAAs despite uniform collagen content between groups indicate that microstructural changes in collagen contribute to BAV-associated aortopathy.


Subject(s)
Aorta, Thoracic/chemistry , Aorta, Thoracic/physiopathology , Aortic Aneurysm, Thoracic/physiopathology , Collagen/metabolism , Tensile Strength/physiology , Aged , Aortic Aneurysm, Thoracic/metabolism , Humans , Middle Aged , Phenotype
7.
Biomacromolecules ; 12(9): 3265-74, 2011 Sep 12.
Article in English | MEDLINE | ID: mdl-21755999

ABSTRACT

Biodegradable polyurethane urea (PUU) elastomers are ideal candidates for fabricating tissue engineering scaffolds with mechanical properties akin to strong and resilient soft tissues. PUU with a crystalline poly(ε-caprolactone) (PCL) macrodiol soft segment (SS) showed good elasticity and resilience at small strains (<50%) but showed poor resilience under large strains because of stress-induced crystallization of the PCL segments, with a permanent set of 677 ± 30% after tensile failure. To obtain softer and more resilient PUUs, we used noncrystalline poly(trimethylene carbonate) (PTMC) or poly(δ-valerolactone-co-ε-caprolactone) (PVLCL) macrodiols of different molecular weights as SSs that were reacted with 1,4-diisocyanatobutane and chain extended with 1,4-diaminobutane. Mechanical properties of the PUUs were characterized by tensile testing with static or cyclic loading and dynamic mechanical analysis. All of the PUUs synthesized showed large elongations at break (800-1400%) and high tensile strength (30-60 MPa). PUUs with noncrystalline SSs all showed improved elasticity and resilience relative to the crystalline PCL-based PUU, especially for the PUUs with high molecular weight SSs (PTMC 5400 M(n) and PVLCL 6000 M(n)), of which the permanent deformation after tensile failure was only 12 ± 7 and 39 ± 4%, respectively. The SS molecular weight also influenced the tensile modulus in an inverse fashion. Accelerated degradation studies in PBS containing 100 U/mL lipase showed significantly greater mass loss for the two polyester-based PUUs versus the polycarbonate-based PUU and for PVLCL versus PCL polyester PUUs. Basic cytocompatibility was demonstrated with primary vascular smooth muscle cell culture. The synthesized families of PUUs showed variable elastomeric behavior that could be explained in terms of the underlying molecular design and crystalline behavior. Depending on the application target of interest, these materials may provide options or guidance for soft tissue scaffold development.


Subject(s)
Biocompatible Materials/chemical synthesis , Polyesters/chemical synthesis , Polyurethanes/chemical synthesis , Tissue Engineering/methods , Animals , Biocompatible Materials/metabolism , Biodegradation, Environmental , Caproates/chemistry , Crystallization , Elastomers/chemistry , Endothelial Cells/cytology , Endothelial Cells/drug effects , Endothelium, Vascular/cytology , Endothelium, Vascular/drug effects , Lactones/chemistry , Magnetic Resonance Spectroscopy , Muscle, Smooth/cytology , Muscle, Smooth/drug effects , Polyesters/metabolism , Polyesters/pharmacology , Polyurethanes/metabolism , Polyurethanes/pharmacology , Primary Cell Culture , Pyrones/chemistry , Rats , Spectroscopy, Fourier Transform Infrared , Tensile Strength , Tissue Scaffolds/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...