Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(38): e2206805119, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36095177

ABSTRACT

Habitat anthropization is a major driver of global biodiversity decline. Although most species are negatively affected, some benefit from anthropogenic habitat modifications by showing intriguing life-history responses. For instance, increased recruitment through higher allocation to reproduction or improved performance during early-life stages could compensate for reduced adult survival, corresponding to "compensatory recruitment". To date, evidence of compensatory recruitment in response to habitat modification is restricted to plants, limiting understanding of its importance as a response to global change. We used the yellow-bellied toad (Bombina variegata), an amphibian occupying a broad range of natural and anthropogenic habitats, as a model species to test for and to quantify compensatory recruitment. Using an exceptional capture-recapture dataset composed of 21,714 individuals from 67 populations across Europe, we showed that adult survival was lower, lifespan was shorter, and actuarial senescence was higher in anthropogenic habitats, especially those affected by intense human activities. Increased recruitment in anthropogenic habitats fully offset reductions in adult survival, with the consequence that population growth rate in both habitat types was similar. Our findings indicate that compensatory recruitment allows toad populations to remain viable in human-dominated habitats and might facilitate the persistence of other animal populations in such environments.


Subject(s)
Anthropogenic Effects , Anura , Biodiversity , Animals , Europe , Population Dynamics
2.
J Anim Ecol ; 89(4): 1069-1079, 2020 04.
Article in English | MEDLINE | ID: mdl-31943196

ABSTRACT

Patterns of actuarial senescence can be highly variable among species. Previous comparative analyses revealed that both age at the onset of senescence and rates of senescence are linked to position of a species along the fast-slow life-history continuum. As there are few long-term datasets of wild populations with known-age individuals, intraspecific (i.e. between-population) variation in senescence is understudied and limited to comparisons of wild and captive populations of the same species, mostly birds and mammals. In this paper, we examined how population position along the fast-slow life-history continuum affects intraspecific variation in senescence in an amphibian, Bombina variegata. We used capture-recapture data collected in four populations with contrasting life-history strategies. Senescence trajectories were analysed using Bayesian capture-recapture models. We show that in populations with fast life histories the onset of actuarial senescence was earlier and individuals aged at a faster rate than individuals in populations with slow life histories. Our study provides one of the few empirical examples of among-population variation in actuarial senescence patterns in the wild and confirms that the fast-slow life-history gradient is associated with both macroevolutionary and microevolutionary patterns of actuarial senescence.


Subject(s)
Life History Traits , Mammals , Animals , Anura , Bayes Theorem , Birds
3.
Front Zool ; 15: 11, 2018.
Article in English | MEDLINE | ID: mdl-29681989

ABSTRACT

BACKGROUND: The grey wolf (Canis lupus) is naturally recolonizing its former habitats in Europe where it was extirpated during the previous two centuries. The management of this protected species is often controversial and its monitoring is a challenge for conservation purposes. However, this elusive carnivore can disperse over long distances in various natural contexts, making its monitoring difficult. Moreover, methods used for collecting signs of presence are usually time-consuming and/or costly. Currently, new acoustic recording tools are contributing to the development of passive acoustic methods as alternative approaches for detecting, monitoring, or identifying species that produce sounds in nature, such as the grey wolf. In the present study, we conducted field experiments to investigate the possibility of using a low-density microphone array to localize wolves at a large scale in two contrasting natural environments in north-eastern France. For scientific and social reasons, the experiments were based on a synthetic sound with similar acoustic properties to howls. This sound was broadcast at several sites. Then, localization estimates and the accuracy were calculated. Finally, linear mixed-effects models were used to identify the factors that influenced the localization accuracy. RESULTS: Among 354 nocturnal broadcasts in total, 269 were recorded by at least one autonomous recorder, thereby demonstrating the potential of this tool. Besides, 59 broadcasts were recorded by at least four microphones and used for acoustic localization. The broadcast sites were localized with an overall mean accuracy of 315 ± 617 (standard deviation) m. After setting a threshold for the temporal error value associated with the estimated coordinates, some unreliable values were excluded and the mean accuracy decreased to 167 ± 308 m. The number of broadcasts recorded was higher in the lowland environment, but the localization accuracy was similar in both environments, although it varied significantly among different nights in each study area. CONCLUSIONS: Our results confirm the potential of using acoustic methods to localize wolves with high accuracy, in different natural environments and at large spatial scales. Passive acoustic methods are suitable for monitoring the dynamics of grey wolf recolonization and so, will contribute to enhance conservation and management plans.

4.
Glob Chang Biol ; 23(11): 4620-4638, 2017 11.
Article in English | MEDLINE | ID: mdl-28236653

ABSTRACT

Over the last three decades, climate abnormalities have been reported to be involved in biodiversity decline by affecting population dynamics. A growing number of studies have shown that the North Atlantic Oscillation (NAO) influences the demographic parameters of a wide range of plant and animal taxa in different ways. Life history theory could help to understand these different demographic responses to the NAO. Indeed, theory states that the impact of weather variation on a species' demographic traits should depend on its position along the fast-slow continuum. In particular, it is expected that NAO would have a higher impact on recruitment than on adult survival in slow species, while the opposite pattern is expected occur in fast species. To test these predictions, we used long-term capture-recapture datasets (more than 15,000 individuals marked from 1965 to 2015) on different surveyed populations of three amphibian species in Western Europe: Triturus cristatus, Bombina variegata, and Salamandra salamandra. Despite substantial intraspecific variation, our study revealed that these three species differ in their position on a slow-fast gradient of pace of life. Our results also suggest that the differences in life history tactics influence amphibian responses to NAO fluctuations: Adult survival was most affected by the NAO in the species with the fastest pace of life (T. cristatus), whereas recruitment was most impacted in species with a slower pace of life (B. variegata and S. salamandra). In the context of climate change, our findings suggest that the capacity of organisms to deal with future changes in NAO values could be closely linked to their position on the fast-slow continuum.


Subject(s)
Amphibians/physiology , Population Dynamics , Weather , Animals , Climate Change , Europe , Female , Male
5.
Ecology ; 97(10): 2658-2670, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27859109

ABSTRACT

Dispersal is a central component of life history evolution. An increasing number of studies suggest that spatiotemporally variable environments may promote the evolution of "dispersal syndromes," consisting of covariation patterns between dispersal and morphological, physiological, behavioral, and life history traits. At the interspecific scale, the "colonizer syndrome" appears to be one of the most frequently recorded associations between dispersal and life history traits, linking a high dispersal rate, high fecundity, and a short lifespan as systematically combined adaptations in spatiotemporally varying environments. However, few studies have highlighted the existence of a "colonizer syndrome" at the intraspecific scale, and none have investigated how different degrees of habitat stochasticity might shape covariation patterns between dispersal and life history traits. In this study, we examined this issue in free-ranging metapopulations of the yellow-bellied toad (Bombina variegata) using capture-recapture data. Combining the results of this study with another recent study, we found that a high dispersal rate, high fecundity, and a short lifespan are associated in metapopulations experiencing unpredictable environments. In contrast, a very low dispersal rate (close to zero), low fecundity and a long lifespan are associated in metapopulations occupying predictable environments. We discuss these results as well as their demographic and evolutionary consequences.


Subject(s)
Anura , Ecosystem , Animals , Biological Evolution , Demography , Fertility , Population Dynamics
6.
Ecology ; 97(4): 980-91, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27220214

ABSTRACT

Because it modulates the fitness returns of possible options of energy expenditure at each ontogenetic stage, environmental stochasticity is usually considered a selective force in driving or constraining possible life histories. Divergent regimes of environmental fluctuation experienced by populations are expected to generate differences in the resource allocation schedule between survival and reproductive effort and outputs. To our knowledge, no study has previously examined how different regimes of stochastic variation in environmental conditions could result in changes in both the temporal variation and mean of demographic parameters, which could then lead to intraspecific variation along the slow-fast continuum of life history tactics. To investigate these issues, we used capture-recapture data collected on five populations of a long-lived amphibian (Bombina variegata) experiencing two distinct levels of stochastic environmental variation: (1) constant availability of breeding sites in space and time (predictable environment), and (2) variable spatio-temporal availability of breeding sites (unpredictable environment). We found that female breeding propensity varied more from year to year in unpredictable than in predictable environments. Although females in unpredictable environments produced on average more viable offspring per year, offspring production was more variable between years. Survival at each ontogenetic stage was slightly lower and varied significantly more from year to year in unpredictable environments. Taken together, these results confirm that increased environmental stochasticity can modify the resource allocation schedule between survival and reproductive effort and outputs and may lead to intraspecific variation along the slow-fast continuum of life history tactics.


Subject(s)
Anura/physiology , Conservation of Natural Resources , Ecosystem , Models, Biological , Animals , Female , Life Cycle Stages , Male , Population Dynamics , Species Specificity , Time Factors
7.
Glob Chang Biol ; 22(8): 2676-87, 2016 08.
Article in English | MEDLINE | ID: mdl-27002592

ABSTRACT

Weather fluctuations have been demonstrated to affect demographic traits in many species. In long-lived organisms, their impact on adult survival might be buffered by the evolution of traits that reduce variation in interannual adult survival. For example, skipping breeding is an effective behavioral mechanism that may limit yearly variation in adult survival when harsh weather conditions occur; however, this in turn would likely lead to strong variation in recruitment. Yet, only a few studies to date have examined the impact of weather variation on survival, recruitment and breeding probability simultaneously in different populations of the same species. To fill this gap, we studied the impact of spring temperatures and spring rainfall on survival, on reproductive skipping behavior and on recruitment in five populations of a long-lived amphibian, the yellow-bellied toad (Bombina variegata). Based on capture-recapture data, our findings demonstrate that survival depends on interactions between age, population and weather variation. Varying weather conditions in the spring result in strong variation in the survival of immature toads, whereas they have little effect on adult toads. Breeding probability depends on both the individual's previous reproductive status and on the weather conditions during the current breeding season, leading to high interannual variation in recruitment. Crucially, we found that the impact of weather variation on demographic traits is largely context dependent and may thus differ sharply between populations. Our results suggest that studies predicting the impact of climate change on population dynamics should be taken with caution when the relationship between climate and demographic traits is established using only one population or few populations. We therefore highly recommend further research that includes surveys replicated in a substantial number of populations to account for context-dependent variation in demographic processes.


Subject(s)
Anura/growth & development , Population Dynamics , Weather , Animals , Anura/physiology , Climate , Climate Change , Demography
SELECTION OF CITATIONS
SEARCH DETAIL
...