Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pathogens ; 5(1)2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26861401

ABSTRACT

Urinary tract infections (UTIs) are among the most common bacterial infections. In an increasing number of cases, pathogen (multi-)resistance hampers durable treatment success via the standard therapies. On the functional level, the activity of urinary excreted antibiotics is compromized by the efficient tissue colonization mechanism of uropathogenic Escherichia coli (UPEC). Advanced drug delivery systems aim at exploiting a glycan-mediated targeting mechanism, similar to the UPEC invasion pathway, to increase bioavailability. This may be realized by conjugation of intravesically applied drugs or drug carriers to chosen plant lectins. Higher local drug concentrations in or nearby bacterial reservoirs may be gained, with higher chances for complete eradication. In this study, preliminary parameters to clarify the potential of this biorecognitive approach were evaluated. Glycan-triggered interaction cascades and uptake processes of several plant lectins with distinct carbohydrate specificities were characterized, and wheat germ agglutinin (WGA) could be identified as the most promising targeter for crossing the urothelial membrane barrier. In partially differentiated primary cells, intracellular accumulation sites were largely identical for GlcNAc- and Mannose-specific lectins. This indicates that WGA-mediated delivery may also enter host cells via the FimH-dependent uptake pathway.

2.
Int J Pharm ; 495(2): 710-8, 2015 Nov 30.
Article in English | MEDLINE | ID: mdl-26383837

ABSTRACT

Urinary tract infections (UTIs) are among the most common bacterial infections. Despite a wide range of therapeutic options, treatment success is compromised by multiresistance and the efficient mechanism of tissue colonization of uropathogenic Escherichia coli (UPEC). In advanced drug delivery systems, a similar, glycan-mediated targeting mechanism may be realized by conjugating the drug to a plant lectin. This may lead to the drug being more efficiently accumulated at the desired site of action, the bacterial reservoirs. In this study, we aimed at elucidating the potential of this biorecognitive approach. Glycan-triggered interaction cascades and uptake processes of several plant lectins with distinct carbohydrate specificities were characterized using single cells and monolayer culture. Due to pronounced cytoadhesive and cytoinvasive properties, wheat germ agglutinin (WGA) emerged as a promising targeter in porcine urothelial primary cells. The lectin-cell interaction proved highly stabile in artificial urine, simulating the conditions in actual application. Colocalisation studies with internalized WGA and lens culinaris agglutinin (LCA) revealed that intracellular accumulation sites were largely identical for GlcNAc- and Mannose-specific lectins. This indicates that WGA-mediated delivery may indeed constitute a potent tool to reach bacteria taken up via a FimH-triggered invasion process. Existing pitfalls in intravesical treatment schedules may soon be overcome.


Subject(s)
Drug Delivery Systems , Lectins/metabolism , Polysaccharides/metabolism , Urothelium/metabolism , Administration, Intravesical , Animals , Lectins/administration & dosage , Plant Lectins/administration & dosage , Plant Lectins/metabolism , Swine , Urinary Bladder/cytology , Urinary Bladder/metabolism , Urinary Tract Infections/drug therapy , Urothelium/cytology , Wheat Germ Agglutinins/administration & dosage , Wheat Germ Agglutinins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...