Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 377(6609): 995-998, 2022 08 26.
Article in English | MEDLINE | ID: mdl-36007051

ABSTRACT

One of the key insights of non-Hermitian photonics is that well-established concepts such as the laser can be operated in reverse to realize a coherent perfect absorber (CPA). Although conceptually appealing, such CPAs are limited so far to a single, judiciously shaped wavefront or mode. Here, we demonstrate how this limitation can be overcome by time-reversing a degenerate cavity laser based on a unique cavity that self-images any incident light field onto itself. Placing a weak, critically coupled absorber into this cavity, any incoming wavefront, even a complex and dynamically varying speckle pattern, is absorbed with close to perfect efficiency in a massively parallel interference process. These characteristics open up interesting new possibilities for applications in light harvesting, energy delivery, light control, and imaging.

2.
Nature ; 567(7748): 351-355, 2019 03.
Article in English | MEDLINE | ID: mdl-30833737

ABSTRACT

Non-Hermitian wave engineering is a recent and fast-moving field that examines both fundamental and application-oriented phenomena1-7. One such phenomenon is coherent perfect absorption8-11-an effect commonly referred to as 'anti-lasing' because it corresponds to the time-reversed process of coherent emission of radiation at the lasing threshold (where all radiation losses are exactly balanced by the optical gain). Coherent perfect absorbers (CPAs) have been experimentally realized in several setups10-18, with the notable exception of a CPA in a disordered medium (a medium without engineered structure). Such a 'random CPA' would be the time-reverse of a 'random laser'19,20, in which light is resonantly enhanced by multiple scattering inside a disorder. Because of the complexity of this scattering process, the light field emitted by a random laser is also spatially complex and not focused like a regular laser beam. Realizing a random CPA (or 'random anti-laser') is therefore challenging because it requires the equivalent of time-reversing such a light field in all its degrees of freedom to create coherent radiation that is perfectly absorbed when impinging on a disordered medium. Here we use microwave technology to build a random anti-laser and demonstrate its ability to absorb suitably engineered incoming radiation fields with near-perfect efficiency. Because our approach to determining these field patterns is based solely on far-field measurements of the scattering properties of a disordered medium, it could be suitable for other applications in which waves need to be perfectly focused, routed or absorbed.

SELECTION OF CITATIONS
SEARCH DETAIL
...