Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 9: 742858, 2021.
Article in English | MEDLINE | ID: mdl-34631683

ABSTRACT

Knowledge of the beneficial effects of perinatal derivatives (PnD) in wound healing goes back to the early 1900s when the human fetal amniotic membrane served as a biological dressing to treat burns and skin ulcerations. Since the twenty-first century, isolated cells from perinatal tissues and their secretomes have gained increasing scientific interest, as they can be obtained non-invasively, have anti-inflammatory, anti-cancer, and anti-fibrotic characteristics, and are immunologically tolerated in vivo. Many studies that apply PnD in pre-clinical cutaneous wound healing models show large variations in the choice of the animal species (e.g., large animals, rodents), the choice of diabetic or non-diabetic animals, the type of injury (full-thickness wounds, burns, radiation-induced wounds, skin flaps), the source and type of PnD (placenta, umbilical cord, fetal membranes, cells, secretomes, tissue extracts), the method of administration (topical application, intradermal/subcutaneous injection, intravenous or intraperitoneal injection, subcutaneous implantation), and the type of delivery systems (e.g., hydrogels, synthetic or natural biomaterials as carriers for transplanted cells, extracts or secretomes). This review provides a comprehensive and integrative overview of the application of PnD in wound healing to assess its efficacy in preclinical animal models. We highlight the advantages and limitations of the most commonly used animal models and evaluate the impact of the type of PnD, the route of administration, and the dose of cells/secretome application in correlation with the wound healing outcome. This review is a collaborative effort from the COST SPRINT Action (CA17116), which broadly aims at approaching consensus for different aspects of PnD research, such as providing inputs for future standards for the preclinical application of PnD in wound healing.

2.
Front Bioeng Biotechnol ; 8: 604123, 2020.
Article in English | MEDLINE | ID: mdl-33425870

ABSTRACT

Mesenchymal stem/stromal cells (MSCs) exert beneficial effects during wound healing, and cell-seeded scaffolds are a promising method of application. Here, we compared the suitability of a clinically used collagen/elastin scaffold (Matriderm) with an electrospun Poly(ε-caprolactone)/poly(l-lactide) (PCL/PLA) scaffold as carriers for human amnion-derived MSCs (hAMSCs). We created an epidermal-like PCL/PLA scaffold and evaluated its microstructural, mechanical, and functional properties. Sequential spinning of different PCL/PLA concentrations resulted in a wide-meshed layer designed for cell-seeding and a dense-meshed layer for apical protection. The Matriderm and PCL/PLA scaffolds then were seeded with hAMSCs, with or without Matrigel coating. The quantity and quality of the adherent cells were evaluated in vitro. The results showed that hAMSCs adhered to and infiltrated both scaffold types but on day 3, more cells were observed on PCL/PLA than on Matriderm. Apoptosis and proliferation rates were similar for all carriers except the coated Matriderm, where apoptotic cells were significantly enhanced. On day 8, the number of cells decreased on all carrier types except the coated Matriderm, which had consistently low cell numbers. Uncoated Matriderm had the highest percentage of proliferative cells and lowest apoptosis rate of all carrier types. Each carrier also was topically applied to skin wound sites in a mouse model and analyzed in vivo over 14 days via optical imaging and histological methods, which showed detectable hAMSCs on all carrier types on day 8. On day 14, all wounds exhibited newly formed epidermis, and all carriers were well-integrated into the underlying dermis and showing signs of degradation. However, only wounds treated with uncoated PCL/PLA maintained a round appearance with minimal contraction. Overall, the results support a 3-day in vitro culture of scaffolds with hAMSCs before wound application. The PCL/PLA scaffold showed higher cell adherence than Matriderm, and the effect of the Matrigel coating was negligible, as all carrier types maintained sufficient numbers of transplanted cells in the wound area. The anti-contractive effects of the PCL/PLA scaffold offer potential new therapeutic approaches to wound care.

3.
Placenta ; 65: 37-46, 2018 05.
Article in English | MEDLINE | ID: mdl-29908640

ABSTRACT

OBJECTIVE: Mesenchymal stem/stromal cells derived from human term placentas (PMSCs) are novel therapeutic agents and more topical than ever. Here we evaluated the effects of three types of PMSCs on wound healing in an in vivo mouse model: Amnion-derived MSCs (AMSCs), blood vessel-derived MSCs (BV-MSCs) from the chorionic plate and Wharton's jelly-derived MSCs (WJ-MSCs) from the umbilical cord. METHODS: We topically applied PMSCs onto skin wounds in mice using the dermal substitute Matriderm® as carrier and evaluated wound healing parameters. In addition, we investigated the effects of all PMSC types under co-application with placental endothelial cells (PLECs). After 8 days, we compared the percent of wound closure and the angiogenic potential between all groups. RESULTS: AMSCs, BV-MSCs and WJ-MSCs significantly induced a faster healing and a higher number of blood vessels in the wound when compared to controls (Matriderm®-alone). PLECs did not further improve the advantageous effects of PMSC-treatment. Quantitative data and 3D analysis by high resolution episcopic microscopy confirmed a lower density of vessels in Matriderm®/PMSCs/PLECs co-application compared to Matriderm®/PMSCs treatment. CONCLUSION: Results indicate that all three PMSC types exert similar beneficial effects on wound closure and neovascularization in our mouse model. PRACTICE: Using Matriderm® as carrier for PMSCs propagates rapid cell migration towards the wound area that allows a fast and clinically practicable method for stem cell application. IMPLICATIONS: These promising effects warrant further investigation in clinical trials.


Subject(s)
Amnion/cytology , Chorion/cytology , Mesenchymal Stem Cell Transplantation/methods , Regeneration/physiology , Skin Physiological Phenomena , Umbilical Cord/cytology , Wound Healing/physiology , Animals , Cells, Cultured , Dermis/injuries , Dermis/pathology , Dermis/physiology , Disease Models, Animal , Female , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/physiology , Mice , Mice, Nude , Mice, Transgenic , Pregnancy
4.
Placenta ; 48: 99-103, 2016 12.
Article in English | MEDLINE | ID: mdl-27871479

ABSTRACT

Amnion-derived mesenchymal stem cells (AMSC) are a promising tool in regenerative medicine. Here we evaluated the utility of Matrigel and Matriderm as carrier for the topical application of AMSC to mice skin wounds. In both application forms, AMSC promoted neovascularization of the wound area. Matrigel proved as excellent matrix for AMSC and immigrating mouse cells, but the solid Matriderm enabled a more adequate positioning of AMSC into the wound. Although AMSC did not attach to Matriderm, they reliably induced wound reduction. Thus, a combined administration of AMSC/Matriderm could be beneficial to potentiate the encouraging effects on wound healing.


Subject(s)
Collagen/therapeutic use , Elastin/therapeutic use , Laminin/therapeutic use , Mesenchymal Stem Cells/cytology , Neovascularization, Physiologic/physiology , Proteoglycans/therapeutic use , Wound Healing/physiology , Animals , Drug Combinations , Humans , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...