Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Chem Soc Rev ; 51(8): 3280-3313, 2022 Apr 19.
Article in English | MEDLINE | ID: mdl-35353106

ABSTRACT

The magnetic anisotropy associated with a pentagonal bipyramidal (PBP) coordination sphere is examined on the basis of experimental and theoretical investigations. The origin and the characteristics of this anisotropy are discussed in relation to the electronic configuration of the metal ions. The effects of crystal field, structural distortion, and a second-coordination sphere on the observed anisotropies for transition meal and lanthanide ions are outlined. For the Ln derivatives, we focus on compounds showing SMM-like behavior (i.e. slow relaxation of their magnetization) in order to highlight the essential chemical and structural parameters for achieving strong axial anisotropy. The use of PBP complexes to impart controlled magnetic anisotropy in polynuclear species such as SMMs or SCMs is also addressed. This review of the magnetic anisotropies associated with a pentagonal bipyramidal coordination sphere for transition metal and lanthanide ions is intended to highlight some general trends that can guide chemists towards designing a compound with specific properties.

2.
Biol Rev Camb Philos Soc ; 97(2): 481-504, 2022 04.
Article in English | MEDLINE | ID: mdl-34758515

ABSTRACT

Landscape perspectives in riverine ecology have been undertaken increasingly in the last 30 years, leading aquatic ecologists to develop a diverse set of approaches for conceptualizing, mapping and understanding 'riverscapes'. Spatiotemporally explicit perspectives of rivers and their biota nested within the socio-ecological landscape now provide guiding principles and approaches in inland fisheries and watershed management. During the last two decades, scientific literature on riverscapes has increased rapidly, indicating that the term and associated approaches are serving an important purpose in freshwater science and management. We trace the origins and theoretical foundations of riverscape perspectives and approaches and examine trends in the published literature to assess the state of the science and demonstrate how they are being applied to address recent challenges in the management of riverine ecosystems. We focus on approaches for studying and visualizing rivers and streams with remote sensing, modelling and sampling designs that enable pattern detection as seen from above (e.g. river channel, floodplain, and riparian areas) but also into the water itself (e.g. aquatic organisms and the aqueous environment). Key concepts from landscape ecology that are central to riverscape approaches are heterogeneity, scale (resolution, extent and scope) and connectivity (structural and functional), which underpin spatial and temporal aspects of study design, data collection and analysis. Mapping of physical and biological characteristics of rivers and floodplains with high-resolution, spatially intensive techniques improves understanding of the causes and ecological consequences of spatial patterns at multiple scales. This information is crucial for managing river ecosystems, especially for the successful implementation of conservation, restoration and monitoring programs. Recent advances in remote sensing, field-sampling approaches and geospatial technology are making it increasingly feasible to collect high-resolution data over larger scales in space and time. We highlight challenges and opportunities and discuss future avenues of research with emerging tools that can potentially help to overcome obstacles to collecting, analysing and displaying these data. This synthesis is intended to help researchers and resource managers understand and apply these concepts and approaches to address real-world problems in freshwater management.


Subject(s)
Ecosystem , Rivers , Aquatic Organisms
3.
Chemistry ; 27(62): 15484-15495, 2021 Nov 05.
Article in English | MEDLINE | ID: mdl-34523758

ABSTRACT

Trinuclear systems of formula [{Cr(LN3O2Ph )(CN)2 }2 M(H2 LN3O2R )] (M=MnII and FeII , LN3O2R stands for pentadentate ligands) were prepared in order to assess the influence of the bending of the apical M-N≡C linkages on the magnetic anisotropy of the FeII derivatives and in turn on their Single-Molecule Magnet (SMM) behaviors. The cyanido-bridged [Cr2 M] derivatives were obtained by assembling trans-dicyanido CrIII complex [Cr(LN3O2Ph )(CN)2 ]- and divalent pentagonal bipyramid complexes [MII (H2 LN3O2R )]2+ with various R substituents (R=NH2 , cyclohexyl, S,S-mandelic) imparting different steric demand to the central moiety of the complexes. A comparative examination of the structural and magnetic properties showed an obvious effect of the deviation from straightness of the M-N≡C alignment on the slow relaxation of the magnetization exhibited by the [Cr2 Fe] complexes. Theoretical calculations have highlighted important effects of the bending of the apical C-N-Fe linkages on both the magnetic anisotropy of the FeII center and the exchange interactions with the CrIII units.

4.
Chem Commun (Camb) ; 57(2): 207-210, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-33300509

ABSTRACT

A water processable cyanido bridged extended chiral heterobimetallic Co(ii)-Fe(iii) network is assembled. The unusual water processability of the coordination polymer originates from dangling hydrophilic substituents. The present approach offers a simple route to impart solution processability to cyanido bridged molecular magnetic materials.

5.
J Am Chem Soc ; 140(24): 7698-7704, 2018 06 20.
Article in English | MEDLINE | ID: mdl-29888914

ABSTRACT

A cyano-bridged Fe(II)-Cr(III) single-chain magnet designed to ensure a parallel orientation of the axial anisotropy of the building units is reported. This ferromagnetic chain compound consists of a pentagonal bipyramid Fe(II) complex with Ising-type anisotropy and a dicyanide Cr(III) complex interlinked through their apical positions. It is characterized by an energy gap for the magnetization reversal of Δeff/ kB = 113 K and exhibits magnetic hysteresis with a coercive field of 1400 Oe at 2 K which positions this compound among the very few examples of SCMs with spin reversal barriers above 100 K. The quite remarkable performances of this single-strand SCM are attributed to the alignment of the local anisotropy axes, which is supported by ab initio modeling. A discrete Cr2Fe complex based on the same building units and behaving as a SMM in zero field is also reported.

6.
Chemistry ; 23(18): 4380-4396, 2017 Mar 28.
Article in English | MEDLINE | ID: mdl-28118518

ABSTRACT

Pentagonal bipyramid FeII complexes have been investigated to evaluate their potential as Ising-spin building units for the preparation of heteropolynuclear complexes that are likely to behave as single-molecule magnets (SMMs). The considered monometallic complexes were prepared from the association of a divalent metal ion with pentadentate ligands that have a 2,6-diacetylpyridine bis(hydrazone) core (H2 LN3O2R ). Their magnetic anisotropy was established by magnetometry to reveal their zero-field splitting (ZFS) parameter D, which ranged between -4 and -13 cm-1 and was found to be modulated by the apical ligands (ROH versus Cl). The alteration of the D value by N-bound axial CN ligands, upon association with cyanometallates, was also assessed for heptacoordinated FeII as well as for related NiII and CoII derivatives. In all cases, N-coordinated cyanide ligands led to large magnetic anisotropy (i.e., -8 to -18 cm-1 for Fe and Ni, +33 cm-1 for Co). Ab initio calculations were performed on three FeII complexes, which enabled one to rationalize the role of the ligand on the nature and magnitude of the magnetic anisotropy. Starting from the pre-existing heptacoordinated complexes, a series of pentanuclear compounds were obtained by reactions with paramagnetic [W(CN)8 ]3- . Magnetic studies revealed the occurrence of ferromagnetic interactions between the spin carriers in all the heterometallic systems. Field-induced slow magnetic relaxation was observed for mononuclear FeII complexes (Ueff /kB up to 53 K (37 cm-1 ), τ0 =5×10-9  s), and SMM behavior was evidenced for a heteronuclear [Fe3 W2 ] derivative (Ueff /kB =35 K and τ0 =4.6 10-10  s), which confirmed that the parent complexes were robust Ising-type building units. High-field EPR spectroscopic investigation of the ZFS parameters for a Ni derivative is also reported.

7.
Inorg Chem ; 55(21): 10968-10977, 2016 Nov 07.
Article in English | MEDLINE | ID: mdl-27783500

ABSTRACT

A family of four-coordinate FeII complexes formed with N,N'-chelating amido-pyridine ligands was synthesized, and their magnetic properties were investigated. These distorted tetrahedral complexes exhibit significant magnetic anisotropy with zero-field splitting parameter D ranging between -17 and -12 cm-1. Ab initio calculations enabled identification of the structural factors that control the nature of the magnetic anisotropy and the rationalization of the variation of D in these complexes. It is shown that a reduced N-Fe-N angle involving the chelating nitrogen atoms of the ligands is at the origin of the negative D value and that the torsion between the two N-Fe-N planes imposed by steric hindrances further increases the |D| value. Field-induced slow relaxation of magnetization was observed for the three compounds, and a single-molecule magnet behavior with an energy barrier for magnetization flipping (Ueff) of 27 cm-1 could be evidenced for one of them.

8.
Dalton Trans ; 44(38): 16713-27, 2015 Oct 14.
Article in English | MEDLINE | ID: mdl-26199073

ABSTRACT

Three families of heterotrimetallic chains (type 1-type 3), with different topologies, have been obtained by reacting the 3d-4f complexes, [{Cu(L(1))}xLn(NO3)3] with x = 1 or 2, formed in situ by the reaction of Schiff-base bi-compartmental [Cu(II)(L(1))] complexes and lanthanide(iii) salts, with (NHBu3)3[M(CN)8] (M = Mo(V), W(V)). For type 1 series of compounds, 1-D coordination polymers, with the general formula [{Cu2(valpn)2Ln}{M(CN)8}]·nH2O·mCH3CN (where H2valpn = 1,3-propanediylbis(2-iminomethylene-6-methoxy-phenol), result from the association of trinuclear {CuLn(III)} moieties and [M(V)(CN)8](3-) anions acting as tri-connecting spacers [Ln = La (1), Ce (2), Eu (3), Tb (4), Ho (5), M = Mo; Ln = Tb (6), Ho (7), M = W; m = 0, n = 1.5 (7) and 2 (1-4, 6); n = 1, m = 1 (5)]. The type 2 family has the general formula [{Cu(valdp)Ln(H2O)4}{M(CN)8}]·2H2O·CH3CN (where H2valdp = 1,2-propanediylbis(2-iminomethylene-6-methoxy-phenol)) and also consists of heterotrimetallic chains involving binuclear {Cu(II)Ln(III)} units linked to [M(CN)8](3-) anions coordinating through two cyano groups [Ln = Gd (8), Tb (9), Dy (10); M = Mo; Ln = La (11), Gd (12), Tb (13), Dy (14); M = W]. With large Ln(III) ions (La(III) and Pr(III)), the type 3 family of heterotrimetallic compounds are assembled: [{Cu2(valdp)2Ln(H2O)4}{Mo(CN)8}]·nCH3OH·mCH3CN, n, m = 0, Ln = La (15); n = m = 1, Pr (16), in which the trinuclear {CuLn(III)} nodes are connected to [Mo(V)(CN)8](3-) anions that act as tetra-connecting spacers. For Tb(III) derivatives of the type 1 (compounds 4 and 6), the DC magnetic properties indicate a predominant ferromagnetic Cu(II)-Tb(III) interaction, while the AC magnetic susceptibility (in the presence of a static magnetic field, HDC = 3000 Oe) emphasize the slow relaxation of the magnetization (Ueff/kB = 20.55 K and τ0 = 5.5 × 10(-7) s for compound 4, Ueff/kBT = 15.1 K and τ0 = 1.5 × 10(-7) s for compound 6). A predominant ferromagnetic Cu(II)-Ln(III) interaction was also observed in the type 2 series (compounds 8-10 and 12-14) as a result of the magnetic coupling between copper(ii) and lanthanide(iii) ions via the phenoxo-bridge. The magnetic behavior for the La(III) derivatives reveals that weak ferromagnetic interactions are also operative between the Cu(II) and the 4d/5d centers.

9.
Chem Commun (Camb) ; 51(17): 3616-9, 2015 Feb 28.
Article in English | MEDLINE | ID: mdl-25634762

ABSTRACT

Supramolecular organization of a metal complex may significantly contribute to the magnetization dynamics of mononuclear SMMs. This is illustrated for a heptacoordinated Fe(II) complex with rather moderate Ising-type anisotropy for which a slow magnetization relaxation with significant energy barrier was reached when this complex was properly organized in the crystal lattice. Incidentally, it is the first example of single-ion magnet behaviour of Fe(II) in a pentagonal bipyramid surrounding.

10.
Chem Commun (Camb) ; 50(94): 14873-6, 2014 Dec 07.
Article in English | MEDLINE | ID: mdl-25325676

ABSTRACT

The synthesis, structural characterization and magnetic properties of a 1D coordination polymer based on a linear mixed valent [Mn(III)2Mn(II)] repeating unit are described. It displays single-chain magnet (SCM) behaviour with an energy barrier of ∼38 K and represents the first example of a mixed valent Mn-carboxylate SCM with a linear architecture.

11.
J Am Chem Soc ; 135(39): 14840-53, 2013 Oct 02.
Article in English | MEDLINE | ID: mdl-23968396

ABSTRACT

The spin-crossover complex [Fe(LN5)(CN)2]·H2O (1, LN5 = 2,13-dimethyl-3,6,9-12,18-pentaazabicyclo[12.3.1]octadeca-1(18),2,12,14,16-pentaene), reported previously by Nelson et al. in 1986, was reinvestigated, and its structure determined by single crystal X-ray diffraction for the first time. The reaction between [Mn(III)(saltmen)(H2O)](+) and this photomagnetic linker yielded the trinuclear molecular complex [{Mn(saltmen)}2FeHS(LN5)(CN)2](ClO4)2·0.5CH3OH (2) and the one-dimensional compound [{Mn(saltmen)}2FeLS(LN5)(CN)2](ClO4)2·0.5C4H10O·0.5H2O (3) depending on the addition order of the reagents (HS: High-Spin; LS: Low-Spin). Compound 3 exhibits a wave-shaped chain structure built from the assembly of the trinuclear [Mn(III)-NC-Fe(II)] motif found in 2. Static magnetic measurements revealed the existence of antiferromagnetic Mn(III)···Fe(II) (Fe(II) HS, S = 2) interactions in the trinuclear entity of 2 via the cyanido bridge leading to an ST = 2 ground state. In the case of 3, concomitant ferromagnetic and antiferromagnetic exchange interactions are found along the chain due to the presence of two crystallographically independent {Mn2(saltmen)2} units, which behave differently as shown by the magnetic susceptibility analysis, while the Fe(II) (LS, S = 0) cyanido-bridging moiety is isolating these dinuclear Mn(III) units. ac susceptibility experiments indicated slow relaxation of the magnetization arising from the ferromagnetically coupled [Mn2] units (τ0 = 1.1 × 10(-7) s and Δ(eff)/k(B) = 13.9 K). Optical reflectivity and photomagnetic properties of 1 and 3 have been investigated in detail. These studies reveal that the photomagnetic properties of 1 are kept after its coordination to the acceptor Mn(III)/saltmen complexes, allowing in 3 to switch "on" and "off" the magnetic interaction between the photoinduced Fe(II) HS unit (S = 2) and the Mn(III) ions. To the best of our knowledge, the compound 3 represents the first example of a coordination network of single-molecule magnets linked by spin-crossover units inducing thermally and photoreversible magnetic and optical properties.

12.
Inorg Chem ; 52(13): 7317-9, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23763502

ABSTRACT

A new [Mn(III)9] complex was synthesized from a naphthoxime-based ligand. It was structurally and magnetically characterized, revealing a rare defect supertetrahedral topology and promising SMM properties with a large energy barrier of 67 K.

13.
Inorg Chem ; 51(6): 3796-812, 2012 Mar 19.
Article in English | MEDLINE | ID: mdl-22385557

ABSTRACT

The reaction of [Fe(III)L(CN)(3)](-) (L being bpca = bis(2-pyridylcarbonyl)amidate, pcq = 8-(pyridine-2-carboxamido)quinoline) or [Fe(III)(bpb)(CN)(2)](-) (bpb = 1,2-bis(pyridine-2-carboxamido)benzenate) ferric complexes with Mn(III) salen type complexes afforded seven new bimetallic cyanido-bridged Mn(III)-Fe(III) systems: [Fe(pcq)(CN)(3)Mn(saltmen)(CH(3)OH)]·CH(3)OH (1), [Fe(bpca)(CN)(3)Mn(3-MeO-salen)(OH(2))]·CH(3)OH·H(2)O (2), [Fe(bpca)(CN)(3)Mn(salpen)] (3), [Fe(bpca)(CN)(3)Mn(saltmen)] (4), [Fe(bpca)(CN)(3)Mn(5-Me-saltmen)]·2CHCl(3) (5), [Fe(pcq)(CN)(3)Mn(5-Me-saltmen)]·2CH(3)OH·0.75H(2)O (6), and [Fe(bpb)(CN)(2)Mn(saltmen)]·2CH(3)OH (7) (with saltmen(2-) = N,N'-(1,1,2,2-tetramethylethylene)bis(salicylideneiminato) dianion, salpen(2-) = N,N'-propylenebis(salicylideneiminato) dianion, salen(2-) = N,N'-ethylenebis(salicylideneiminato) dianion). Single crystal X-ray diffraction studies were carried out for all these compounds indicating that compounds 1 and 2 are discrete dinuclear [Fe(III)-CN-Mn(III)] complexes while systems 3-7 are heterometallic chains with {-NC-Fe(III)-CN-Mn(III)} repeating units. These chains are connected through π-π and short contact interactions to form extended supramolecular networks. Investigation of the magnetic properties revealed the occurrence of antiferromagnetic Mn(III)···Fe(III) interactions in 1-4 while ferromagnetic Mn(III)···Fe(III) interactions were detected in 5-7. The nature of these Mn(III)···Fe(III) magnetic interactions mediated by a CN bridge appeared to be dependent on the Schiff base substituent. The packing is also strongly affected by the nature of the substituent and the presence of solvent molecules, resulting in additional antiferromagnetic interdinuclear/interchain interactions. Thus the crystal packing and the supramolecular interactions induce different magnetic properties for these systems. The dinuclear complexes 1 and 2, which possess a paramagnetic S(T) = 3/2 ground state, interact antiferromagnetically in their crystal packing. At high temperature, the complexes 3-7 exhibit a one-dimensional magnetic behavior, but at low temperature their magnetic properties are modulated by the supramolecular arrangement: a three-dimensional antiferromagnetic order with a metamagnetic behavior is observed for 3, 4, and 7, and Single-Chain Magnet properties are detected for 5 and 6.

14.
Science ; 331(6024): 1590-2, 2011 Mar 25.
Article in English | MEDLINE | ID: mdl-21436449

ABSTRACT

We report a self-recognition phenomenon based on an assembly process in a homogeneous dilute aqueous solution of two nano-scaled, spherical polyprotic metal oxide-based macroions (neutral species in crystals), also called Keplerates of the type [(linker)30(pentagon)12]≡[{M(H2O)}30{(Mo)Mo5}12] where M is Fe(III) or Cr(III). Upon deprotonation of the neutral species, the resulting macroions assemble into hollow "blackberry"-type structures through very slow homogeneous dimer-oligomerization processes. Although the geometrical surface structures of the two macroions are practically identical, mixtures of these form homogeneous superstructures, rather than mixed species. The phase separation is based on the difference in macroionic charge densities present during the slow homogeneous dimer or oligomer formation. The surface water ligands' residence times of Cr(III) and Fe(III) differ markedly and lead to very different interfacial water mobilities between the Keplerates.

15.
Phys Chem Chem Phys ; 13(1): 322-7, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-20981378

ABSTRACT

The pyridinium salts of 12-tungstophosphoric acid (PyH)(3)[PW(12)O(40)]·2CH(3)CN (1) and (PyH)(3)[PW(12)O(40)] (2) have been prepared and studied by single crystal and powder X-ray diffraction (XRD) in order to characterize the crystallographic sites occupied by the pyridinium species. The three PyH(+) species are located on two unequivalent sites. Two species are linearly H-bonded to the oxygen atoms of the Keggins unit (α species), whereas the third one (ß) forms a bent H-bond. In order to determine the infrared bands characterizing each type of pyridinium species in the 1650-1300 cm(-1) range, infrared spectra have been recorded from room temperature to 100 K. They reveal that only α pyridinium species give rise to the unusual splitting of the PyH(+)ν8b and ν19b modes, whereas ß pyridinium species lead to a classical pyridinium spectrum.


Subject(s)
Organometallic Compounds/chemistry , Pyridinium Compounds/chemistry , Tungsten/chemistry , Crystallography, X-Ray , Models, Molecular , Organometallic Compounds/chemical synthesis , Powder Diffraction , Spectrophotometry, Infrared
16.
Inorg Chem ; 47(23): 11120-8, 2008 Dec 01.
Article in English | MEDLINE | ID: mdl-18959376

ABSTRACT

Three high-nuclearity NiII-substituted polyoxometalate compounds functionalized by exogenous ligands have been synthesized and characterized. The octanuclear complexes in Na15[Na{(A-R-SiW9O34)Ni4(CH3COO)3(OH)3}2] . 4NaCl . 36H2O (1) and Na15[Na{(A-R-SiW9O34)Ni4(CH3COO)3(OH)2(N3)}2] . 32H2O (2) can be described as two {Ni4} subunits connected via a {Na(CH3COO)6} group, with the acetato ligands also ensuring in each subunit the connection between the paramagnetic centers. In 2, two azido groups replace two of the six mu-hydroxo ligands present in 1. The nonanuclear complex K7Na7[(A-R-SiW9O34)2Ni9(OH)6(H2O)6(CO3)3] . 42H2O (3) exhibits a double cubanestructure with two [(A-R-SiW9O34)Ni4(OH)3]5- subunits linked by three carbonato ligands. A ninth NiII center connected to one subunit via a carbonato ligand and a O=W group completes this asymmetric polyoxometalate.Electronic spectroscopy and electrochemical studies indicate that, while compounds 1-3 decompose in a pure aqueous medium, these complexes are very stable in a pH 6 acetate medium. The cyclic voltammetry pattern of each complex is constituted by a first eight-electron reduction wave followed by a second large-current intensity wave. The characteristics of the first waves of the complexes are clearly distinct from those obtained for their lacunary precursor [A-R-SiW9O34]10-, a feature that is due to the Ni centers in the complexes. Such observations of electroactive, stable, and highly nickel-rich polyoxometalates are not common. Measurements of the magnetic susceptibility revealed the occurrence of concomitant ferromagnetic and antiferromagnetic interactions in 1 and 3.For both of these compounds, the extension of the magnetic exchange has been determined by means of a spin Hamiltonian with three and four J constants, respectively.

17.
Dalton Trans ; (1): 71-6, 2008 Jan 07.
Article in English | MEDLINE | ID: mdl-18399231

ABSTRACT

Two new insoluble transition metal substituted phosphotungstates, (C2N2H10)11[{(B-alpha-PW9O34)Fe3(OH)3}4(PO4)4Fe].38H2O(1) and K4(C2N2H10)12[(alpha-PW10Fe2O39)4].30H2O(2), have been isolated by the hydrothermal reaction of [A-alpha-PW9O34]9-, Fe(III) ions and ethylenediamine. Compound 1 has a tetrahedral symmetry and contains a Fe13 core built from the assembly of four Fe(III) trisubstituted [B-alpha-PW9O34]9- anions around a central disordered iron ion via four phosphato ligands. The anion in 2 can be described as a square of disubstituted [PW10O37]9- anions linked by Fe(III)-O-Fe(III) bridges. Magnetic measurements performed on 1 and 2 have shown the occurrence of antiferromagnetic interactions between the iron ions and have allowed the coupling constants between the magnetic centers to be determined.

18.
Chemistry ; 14(10): 3189-99, 2008.
Article in English | MEDLINE | ID: mdl-18232030

ABSTRACT

While the reaction of [PW(11)O(39)](7-) with first row transition-metal ions M(n+) under usual bench conditions only leads to monosubstituted {PW(11)O(39)M(H(2)O)} anions, we have shown that the use of this precursor under hydrothermal conditions allows the isolation of a family of novel polynuclear discrete magnetic polyoxometalates (POMs). The hybrid asymmetric [Fe(II)(bpy)(3)][PW(11)O(39)Fe(2) (III)(OH)(bpy)(2)]12 H(2)O (bpy=bipyridine) complex (1) contains the dinuclear {Fe(micro-O(W))(micro-OH)Fe} core in which one iron atom is coordinated to a monovacant POM, while the other is coordinated to two bipyridine ligands. Magnetic measurements indicate that the Fe(III) centers in complex 1 are weakly antiferromagnetically coupled (J=-11.2 cm(-1), H=-JS(1)S(2)) compared to other {Fe(micro-O)(micro-OH)Fe} systems. This is due to the long distances between the iron center embedded in the POM and the oxygen atom of the POM bridging the two magnetic centers, but also, as shown by DFT calculations, to the important mixing of bridging oxygen orbitals with orbitals of the POM tungsten atoms. The complexes [Hdmbpy](2)[Fe(II)(dmbpy)(3)](2)[(PW(11)O(39))(2)Fe(4) (III)O(2)(dmbpy)(4)]14 H(2)O (2) (dmbpy=5,5'-dimethyl-2,2'-bipyridine) and H(2)[Fe(II)(dmbpy)(3)](2)[(PW(11)O(39))(2)Fe(4) (III)O(2)(dmbpy)(4)]10 H(2)O (3) represent the first butterfly-like POM complexes. In these species, a tetranuclear Fe(III) complex is sandwiched between two lacunary polyoxotungstates that are pentacoordinated to two Fe(III) cations, the remaining paramagnetic centers each being coordinated to two dmbpy ligands. The best fit of the chi(M)T=f(T) curve leads to J(wb)=-59.6 cm(-1) and J(bb)=-10.2 cm(-1) (H=-J(wb)(S(1)S(2)+S(1)S(2*)+S(1*)S(2)+S(1*)S(2*))-J(bb)(S(2)S(2*))). While the J(bb) value is within the range of related exchange parameters previously reported for non-POM butterfly systems, the J(wb) constant is significantly lower. As for complex 1, this can be justified considering Fe(w)--O distances. Finally, in the absence of a coordinating ligand, the dimeric complex [N(CH(3))(4)](10)[(PW(11)O(39)Fe(III))(2)O]12 H(2)O (4) has been isolated. In this complex, the two single oxo-bridged Fe(III) centers are very strongly antiferromagnetically coupled (J=-211.7 cm(-1), H=-JS(1)S(2)). The electrochemical behavior of compound 1 both in dimethyl sulfoxide (DMSO) and in the solid state is also presented, while the electrochemical properties of complex 2, which is insoluble in common solvents, have been studied in the solid state.

19.
Inorg Chem ; 46(19): 7710-2, 2007 Sep 17.
Article in English | MEDLINE | ID: mdl-17696495

ABSTRACT

Using magnetization measurements and multifrequency high-field electron paramagnetic resonance, the largest zero-field splitting for any individual isolated Mn(II) ion has been found in a polyoxometalate complex, suggesting that the inorganic ligand induces large Ising-type magnetic anisotropy.

20.
Inorg Chem ; 46(13): 5292-301, 2007 Jun 25.
Article in English | MEDLINE | ID: mdl-17511448

ABSTRACT

Two new Cu(II) azido polyoxometalates compounds have been synthesized, and their structures were determined by X-ray crystallography. The compound Na(14)[SiW(9)O(34)Cu(3)(N(3))(2)(OH)(H(2)O)](2) x 24H(2)O (1) is built from two [SiW(9)O(34)Cu(3)(mu(1,1,3)-N(3))(2)(mu-OH)(H(2)O)](7-) subunits where the copper centers, connected by two azido ligands and one hydroxo group, form a nearly equilateral triangle. The two subunits are related by an inversion center and connected via the two mu(1,1,3)-N(3) ligands in an end-to-end fashion, affording a hexanuclear Cu(II) cluster. Linkage of these fragments via Cu-O=W bonds leads to a bidimensional arrangement of the polyoxometalate units. The complex LiK(14)Na(9)[P(8)W(48)O(184)Cu(20)(N(3))(6)(OH)(18)] x 60H(2)O (2) consists of two {Cu(5)(OH)(4)}(6+) and two {Cu(5)(OH)(2)(mu(1,1,3,3)-N(3))}(7+) subunits connected via four mu-OH and four mu(1,1)-N(3) additional ligands, the 20 copper centers being encapsulated in the [P(8)W(48)O(184)](40-) crown polyoxotungstate ligand. 1 represents the first multidimensional compound based on azido polyoxometalate (POM) units, and 2 represents by far the largest azido POM complex isolated to date. Magnetic measurements revealed an overall antiferromagnetic behavior for both compounds. Nevertheless, the study of the variation of the magnetization with the applied field indicates that 1 possesses a triplet ground state, which can be attributed to weak ferromagnetic interaction between the S = 1/2 triangular subunits. The stability of 1 and 2 evidenced by UV-vis spectroscopy and gel filtration chromatography, in particular at pH 5, has allowed a detailed study of their redox and electrocatalytic properties. For both compounds, the stability of the Cu(II)/Cu(I) couple is remarkable compared with the observations made in other Cu(II)-substituted POMs. Electrochemical quartz crystal microbalance measurements clearly demonstrate that the formation of the Cu(I) species occurs neatly without the formation of Cu(0). The accumulation of such Cu(II) centers within the complexes is a favorable condition to envision applications involving several electrons. The electrocatalytic reduction of dioxygen and hydrogen peroxide was achieved efficiently and has shown that the reactivity increases with the nuclearity and/or the Cu/W ratio of the POM complex. The dioxygen reduction is an overall four-electron process with water as the final product. Finally, the reduction of the W centers triggers a strong electrocatalysis of solvent reduction.

SELECTION OF CITATIONS
SEARCH DETAIL
...