Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 844: 157049, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-35780903

ABSTRACT

The rapid decline of shallow coral reefs has increased the interest in the long-understudied mesophotic coral ecosystems (MCEs). However, MCEs are usually characterised by rather low to moderate scleractinian coral cover, with only a few descriptions of high coral cover at depth. Here, we explored eight islands across French Polynesia over a wide depth range (6 to 120 m) to identify coral cover hotspots at mesophotic depths and the co-occurrent biotic groups and abiotic factors that influence such high scleractinian cover. Using Bayesian modelling, we found that 20 out of 64 of studied deep sites exhibited a coral cover higher than expected in the mesophotic range (e.g. as high as 81.8 % at 40 m, 74.5 % at 60 m, 53 % at 90 m and 42 % at 120 m vs the average expected values based on the model of 31.2 % at 40 m, 22.8 % at 60 m, 14.6 % at 90 m and 9.8 % at 120 m). Omitting the collinear factors light-irradiance and depth, these 'hotspots' of coral cover corresponded to mesophotic sites and depths characterised by hard substrate, a steep to moderate slope, and the dominance of laminar corals. Our work unveils the presence of unexpectedly and unique high coral cover communities at mesophotic depths in French Polynesia, highlighting the importance of expanding the research on deeper depths for the potential relevance in the conservation management of tropical coral reefs.


Subject(s)
Anthozoa , Animals , Bayes Theorem , Coral Reefs , Ecosystem , Polynesia
3.
R Soc Open Sci ; 8(11): 210139, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34804562

ABSTRACT

Climate change and consequent coral bleaching are causing the disappearance of reef-building corals worldwide. While bleaching episodes significantly impact shallow waters, little is known about their impact on mesophotic coral communities. We studied the prevalence of coral bleaching two to three months after a heat stress event, along an extreme depth range from 6 to 90 m in French Polynesia. Bayesian modelling showed a decreasing probability of bleaching of all coral genera over depth, with little to no bleaching observed at lower mesophotic depths (greater than or equal to 60 m). We found that depth-generalist corals benefit more from increasing depth than depth-specialists (corals with a narrow depth range). Our data suggest that the reduced prevalence of bleaching with depth, especially from shallow to upper mesophotic depths (40 m), had a stronger relation with the light-irradiance attenuation than temperature. While acknowledging the geographical and temporal variability of the role of mesophotic reefs as spatial refuges during thermal stress, we ought to understand why coral bleaching reduces with depth. Future studies should consider repeated monitoring and detailed ecophysiological and environmental data. Our study demonstrated how increasing depth may offer a level of protection and that lower mesophotic communities could escape the impacts of a thermal bleaching event.

4.
Mol Biol Rep ; 48(3): 2993-2999, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33675466

ABSTRACT

As evolutionary relationships among some coral species still remain unclear, studies on unstudied area such as the Persian Gulf (PG), as part of the western Indo-Pacific, may reveal a better understanding of phylogenetic positions and relationships of corals. In the present study, the phylogenetic relationships of eight common coral species (Favites pentagona, Platygyra daedalea, Cyphastrea microphthalma, Siderastrea savignyana, Pavona decussata, Pavona cactus, Goniopora columna, and Goniopora djiboutiensis) collected from two Iranian Islands were compared with the congeneric sequences from the Indo-Pacific (IP) using rDNA region. The result shows that some coral species which were hitherto considered as representatives of widespread species from IP are related to distinct lineages. Further, it appears that morphological convergence between the taxa leads to an underestimation of the real coral species diversity in the PG. The current study is the first attempt to investigate the phylogenetic position of coral species from the PG in comparison to their counterparts from the IP. As conservation planning hinges on the identification of species, taxonomic revisions have to be undertaken in order to obtain a more reliable picture of coral species diversity in the PG.


Subject(s)
Anthozoa/classification , Anthozoa/genetics , Phylogeny , Animals , Bayes Theorem , Indian Ocean , Islands , Species Specificity
5.
ISME J ; 15(5): 1564-1568, 2021 05.
Article in English | MEDLINE | ID: mdl-33452473

ABSTRACT

The symbiosis between scleractinian corals and photosynthetic algae from the family Symbiodiniaceae underpins the health and productivity of tropical coral reef ecosystems. While this photosymbiotic association has been extensively studied in shallow waters (<30 m depth), we do not know how deeper corals, inhabiting large and vastly underexplored mesophotic coral ecosystems, modulate their symbiotic associations to grow in environments that receive less than 1% of surface irradiance. Here we report on the deepest photosymbiotic scleractinian corals collected to date (172 m depth), and use amplicon sequencing to identify the associated symbiotic communities. The corals, identified as Leptoseris hawaiiensis, were confirmed to host Symbiodiniaceae, predominantly of the genus Cladocopium, a single species of endolithic algae from the genus Ostreobium, and diverse communities of prokaryotes. Our results expand the reported depth range of photosynthetic scleractinian corals (0-172 m depth), and provide new insights on their symbiotic associations at the lower depth extremes of tropical coral reefs.


Subject(s)
Anthozoa , Dinoflagellida , Animals , Coral Reefs , Ecosystem , Symbiosis
6.
Zool Stud ; 57: e56, 2018.
Article in English | MEDLINE | ID: mdl-31966296

ABSTRACT

Parisa Alidoost Salimi, Pargol Ghavam Mostafavi, Chaolun Allen Chen, Seyed Mohammad Reza Fatemi, and Michel Pichon (2018) There are many islands in the Iranian waters, but little is known about their coral species. This is a first attempt to describe and illustrate the coral species occurring in Abu-Musa and Sirri Islands. Overall, 26 species belonging to 9 families are reported, and three unidentified species and two species are added to coral communities of Iran. This study also provides overall insight on coral fauna in the Persian Gulf.

7.
Proc Biol Sci ; 285(1893): 20181987, 2018 Dec 19.
Article in English | MEDLINE | ID: mdl-30963905

ABSTRACT

Coral reefs are increasingly threatened by thermal bleaching and tropical storm events associated with rising sea surface temperatures. Deeper habitats offer some protection from these impacts and may safeguard reef-coral biodiversity, but their faunas are largely undescribed for the Indo-Pacific. Here, we show high species richness of scleractinian corals in mesophotic habitats (30-125 m) for the northern Great Barrier Reef region that greatly exceeds previous records for mesophotic habitats globally. Overall, 45% of shallow-reef species (less than or equal to 30 m), 78% of genera, and all families extended below 30 m depth, with 13% of species, 41% of genera, and 78% of families extending below 45 m. Maximum depth of occurrence showed a weak relationship to phylogeny, but a strong correlation with maximum latitudinal extent. Species recorded in the mesophotic had a significantly greater than expected probability of also occurring in shaded microhabitats and at higher latitudes, consistent with light as a common limiting factor. The findings suggest an important role for deeper habitats, particularly depths 30-45 m, in preserving evolutionary lineages of Indo-Pacific corals. Deeper reef areas are clearly more diverse than previously acknowledged and therefore deserve full consideration in our efforts to protect the world's coral reef biodiversity.


Subject(s)
Anthozoa , Biodiversity , Phylogeny , Animals , Anthozoa/classification , Coral Reefs , Queensland
8.
PLoS One ; 12(2): e0170336, 2017.
Article in English | MEDLINE | ID: mdl-28146574

ABSTRACT

Mesophotic coral ecosystems in the Indo-Pacific remain relatively unexplored, particularly at lower mesophotic depths (≥60 m), despite their potentially large spatial extent. Here, we used a remotely operated vehicle to conduct a qualitative assessment of the zooxanthellate coral community at lower mesophotic depths (60-125 m) at 10 different locations in the Great Barrier Reef Marine Park and the Coral Sea Commonwealth Marine Reserve. Lower mesophotic coral communities were present at all 10 locations, with zooxanthellate scleractinian corals extending down to ~100 metres on walls and ~125 m on steep slopes. Lower mesophotic coral communities were most diverse in the 60-80 m zone, while at depths of ≥100 m the coral community consisted almost exclusively of the genus Leptoseris. Collections of coral specimens (n = 213) between 60 and 125 m depth confirmed the presence of at least 29 different species belonging to 18 genera, including several potential new species and geographic/depth range extensions. Overall, this study highlights that lower mesophotic coral ecosystems are likely to be ubiquitous features on the outer reefs of the Great Barrier Reef and atolls of the Coral Sea, and harbour a generic and species richness of corals that is much higher than thus far reported. Further research efforts are urgently required to better understand and manage these ecosystems as part of the Great Barrier Reef Marine Park and Coral Sea Commonwealth Marine Reserve.


Subject(s)
Anthozoa , Coral Reefs , Ecosystem , Animals , Anthozoa/classification , Australia , Biodiversity , Temperature
9.
Mar Pollut Bull ; 72(2): 406-16, 2013 Jul 30.
Article in English | MEDLINE | ID: mdl-23643407

ABSTRACT

Expert opinion was assessed to identify current knowledge gaps in determining future changes in Arabian/Persian Gulf (thereafter 'Gulf') coral reefs. Thirty-one participants submitted 71 research questions that were peer-assessed in terms of scientific importance (i.e., filled a knowledge gap and was a research priority) and efficiency in resource use (i.e., was highly feasible and ecologically broad). Ten research questions, in six major research areas, were highly important for both understanding Gulf coral reef ecosystems and also an efficient use of limited research resources. These questions mirrored global evaluations of the importance of understanding and evaluating biodiversity, determining the potential impacts of climate change, the role of anthropogenic impacts in structuring coral reef communities, and economically evaluating coral reef communities. These questions provide guidance for future research on coral reef ecosystems within the Gulf, and enhance the potential for assessment and management of future changes in this globally significant region.


Subject(s)
Conservation of Natural Resources , Coral Reefs , Research , Animals , Anthozoa/growth & development , Biodiversity , Climate Change , Forecasting , Indian Ocean
10.
Sci Rep ; 3: 1520, 2013.
Article in English | MEDLINE | ID: mdl-23519209

ABSTRACT

Stylophora pistillata is a widely used coral "lab-rat" species with highly variable morphology and a broad biogeographic range (Red Sea to western central Pacific). Here we show, by analysing Cytochorme Oxidase I sequences, from 241 samples across this range, that this taxon in fact comprises four deeply divergent clades corresponding to the Pacific-Western Australia, Chagos-Madagascar-South Africa, Gulf of Aden-Zanzibar-Madagascar, and Red Sea-Persian/Arabian Gulf-Kenya. On the basis of the fossil record of Stylophora, these four clades diverged from one another 51.5-29.6 Mya, i.e., long before the closure of the Tethyan connection between the tropical Indo-West Pacific and Atlantic in the early Miocene (16-24 Mya) and should be recognised as four distinct species. These findings have implications for comparative ecological and/or physiological studies carried out using Stylophora pistillata as a model species, and highlight the fact that phenotypic plasticity, thought to be common in scleractinian corals, can mask significant genetic variation.


Subject(s)
Anthozoa/genetics , DNA Barcoding, Taxonomic , Electron Transport Complex IV/genetics , Animals , Genetic Variation , Phylogeny , Reference Standards , Species Specificity
11.
Mol Phylogenet Evol ; 65(1): 183-93, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22705823

ABSTRACT

Recent phylogenetic analyses have demonstrated the limits of traditional coral taxonomy based solely on skeletal morphology. In this phylogenetic context, Faviidae and Mussidae are ecologically dominant families comprising one third of scleractinian reef coral genera, but their phylogenies remain partially unresolved. Many of their taxa are scattered throughout most of the clades of the Robust group, and major systematic incongruences exist. Numerous genera and species remain unstudied, and the entire biogeographic area of the Indian Ocean remains largely unsampled. In this study, we analyzed a portion of the mitochondrial cytochrome c oxidase subunit 1 gene and a portion of ribosomal DNA for 14 genera and 27 species of the Faviidae and Mussidae collected from the Indian Ocean and New Caledonia and this is the first analysis of five of these species. For some taxa, newly discovered evolutionary relationships were detected, such as the evolutionary distinctiveness of Acanthastrea maxima, the genetic overlap of Parasimplastrea omanensis and Blastomussa merleti, and the peculiar position of Favites peresi in clade XVII together with Echinopora and Montastraea salebrosa. Moreover, numerous cases of intraspecific divergences between Indian Ocean and Pacific Ocean populations were detected. The most striking cases involve the genera Favites and Favia, and in particular Favites complanata, F. halicora, Favia favus, F. pallida, F. matthaii, and F. rotumana, but divergence also is evident in Blastomussa merleti, Cyphastrea serailia, and Echinopora gemmacea. High morphological variability characterizes most of these taxa, thus traditional skeletal characteristics, such as corallite arrangement, seem to be evolutionary misleading and are plagued by convergence. Our results indicate that the systematics of the Faviidae and the Mussidae is far from being resolved and that the inclusion of conspecific populations of different geographical origin represents an unavoidable step when redescribing the taxonomy and systematics of scleractinian corals. More molecular phylogenies are needed to define the evolutionary lineages that could be corroborated by known and newly discovered micromorphological characters.


Subject(s)
Anthozoa/classification , Biological Evolution , Phylogeny , Animals , Anthozoa/anatomy & histology , Anthozoa/genetics , DNA, Mitochondrial/genetics , DNA, Ribosomal/genetics , Indian Ocean , Pacific Ocean , Sequence Analysis, DNA
12.
Conserv Biol ; 24(2): 541-52, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20105207

ABSTRACT

Marine protected areas (MPAs) have been highlighted as a means toward effective conservation of coral reefs. New strategies are required to more effectively select MPA locations and increase the pace of their implementation. Many criteria exist to design MPA networks, but generally, it is recommended that networks conserve a diversity of species selected for, among other attributes, their representativeness, rarity, or endemicity. Because knowledge of species' spatial distribution remains scarce, efficient surrogates are urgently needed. We used five different levels of habitat maps and six spatial scales of analysis to identify under which circumstances habitat data used to design MPA networks for Wallis Island provided better representation of species than random choice alone. Protected-area site selections were derived from a rarity-complementarity algorithm. Habitat surrogacy was tested for commercial fish species, all fish species, commercially harvested invertebrates, corals, and algae species. Efficiency of habitat surrogacy varied by species group, type of habitat map, and spatial scale of analysis. Maps with the highest habitat thematic complexity provided better surrogates than simpler maps and were more robust to changes in spatial scales. Surrogates were most efficient for commercial fishes, corals, and algae but not for commercial invertebrates. Conversely, other measurements of species-habitat associations, such as richness congruence and composition similarities provided weak results. We provide, in part, a habitat-mapping methodology for designation of MPAs for Pacific Ocean islands that are characterized by habitat zonations similar to Wallis. Given the increasing availability and affordability of space-borne imagery to map habitats, our approach could appreciably facilitate and improve current approaches to coral reef conservation and enhance MPA implementation.


Subject(s)
Anthozoa , Biodiversity , Conservation of Natural Resources/methods , Ecosystem , Animals , Eukaryota , Fishes , Invertebrates , Pacific Islands , Population Dynamics
13.
Biol Bull ; 213(1): 76-87, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17679722

ABSTRACT

Experiments were performed on coral species containing clade A (Stylophora pistillata, Montipora aequituberculata) or clade C (Acropora sp., Pavona cactus) zooxanthellae. The photosynthetic efficiency (F(v)/F(m)) of the corals was first assessed during a short-term increase in temperature (from 27 degrees C to 29 degrees C, 32 degrees C, and 34 degrees C) and acute exposure to UV radiation (20.5 W m(-2) UVA and 1.2 W m(-2) UVB) alone or in combination. Increasing temperature to 34 degrees C significantly decreased the F(v)/F(m) in S. pistillata and M. aequituberculata. Increased UV radiation alone significantly decreased the F(v)/F(m) of all coral species, even at 27 degrees C. There was a combined effect of temperature and UV radiation, which reduced F(v)/F(m) in all corals by 25% to 40%. During a long-term exposure to UV radiation (17 days) the F(v)/F(m) was significantly reduced after 3 days' exposure in all species, which did not recover their initial values, even after 17 days. By this time, all corals had synthesized mycosporine-like amino acids (MAAs). The concentration and diversity of MAAs differed among species, being higher for corals containing clade A zooxanthellae. Prolonged exposure to UV radiation at the nonstressful temperature of 27 degrees C conferred protection against independent, thermally induced photoinhibition in all four species.


Subject(s)
Anthozoa/microbiology , Dinoflagellida/radiation effects , Infrared Rays , Photosynthesis/radiation effects , Ultraviolet Rays , Amino Acids/metabolism , Animals , Anthozoa/metabolism , Anthozoa/radiation effects , Dinoflagellida/genetics , Symbiosis/radiation effects , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...