Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Opt Express ; 32(8): 14321-14333, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38859381

ABSTRACT

This work presents what we believe is a new way to use a CTH:YAG crystal for spontaneous emission instead of laser emission. The spontaneous emission is collected in one main direction thanks to a luminescent concentrator configuration. The CTH:YAG is indirectly LED-pumped by a Ce:YAG delivering 3.5 ms pulses at 10 Hz with an energy of 2 J in the visible (550-650 nm). In a configuration optimized for light extraction, the CTH:YAG luminescent concentrator provides a broadband emission between 1.8 µm and 2.1 µm with a unique combination of power (1 W) and brightness (21.2 W/cm2/sr) that could be useful for short-wave infrared (SWIR) lighting applications.

2.
Appl Opt ; 63(7): 1753-1760, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38437277

ABSTRACT

Lidar C O 2 sensing can be performed by 1572 nm pulsed laser sources. This work presents the development of a fiber amplifier at this wavelength emitting 1 µs FWHM Gaussian pulses at a repetition rate of 7.5 kHz. We obtain the mitigation of stimulated Brillouin scattering (SBS) by shaping the seed laser spectrum into a frequency comb with sinusoidal phase modulation. This frequency comb is compatible with a coherent dual-comb spectroscopy (DCS) method for a targeted lidar C O 2 sensing application. The effect of the harmonics spacing and relative intensity on the SBS threshold is studied. Laser pulses are amplified up to 182 µJ (182 W peak power) from a single-mode erbium (Er) and ytterbium (Yb) co-doped fiber. Those results hold promise for seeding large mode area Er-Yb co-doped fiber power amplifiers.

3.
Opt Express ; 31(16): 26552-26564, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37710513

ABSTRACT

We report on what is, to our knowledge, one of the first realizations of a CBC (coherent beam combining)-based laser emitter carrying a 10.66 Gb/s telecom signal in free-space optics, within the laboratory environment. Two telecom modulations have been tested: NRZ (non-return-to-zero, in amplitude) and DPSK (differential phase-shift keying, in phase). The modulated signal is split and amplified in three fiber amplifiers, delivering up to 3 W each. CBC of data amplified signals is achieved with residual phase errors well below < λ/60 RMS, using a phase-tagging technique (LOCSET). A first analysis of the influence of various parameters (such as phase-tagging modulation depth, optical path difference, number of channels, amplifier power) on the locking and data transmission quality is investigated. The study shows that the phase-tagging modulation depth and optical path difference are the main critical issues when carrying data on a CBC signal.

4.
Sci Rep ; 13(1): 7199, 2023 May 03.
Article in English | MEDLINE | ID: mdl-37137933

ABSTRACT

Cerium-doped lutetium-yttrium oxyorthosilicate (Ce:LYSO) is a well-known single crystal scintillator used in medical imaging and security scanners. Recent development of high power UV LED, matching its absorption band, questions the possibility to use Ce:LYSO in a new way: as LED-pumped solid-state light source. Since Ce:LYSO is available in large size crystals, we investigate its potential as a luminescent concentrator. This paper reports an extensive study of the performance in close relation to the spectroscopic properties of this crystal. It gives the reasons why the Ce:LYSO crystal tested in this study is less efficient than Ce:YAG for luminescent concentration: limited quantum efficiency and high losses coming from self-absorption and from excited-state absorption are playing key roles. However, we demonstrate that a Ce:LYSO luminescent concentrator is an innovative source for solid-state lighting. Pumped by a peak power of 3400 W in quasi-continuous wave regime (40 µs, 10 Hz), a rectangular (1 × 22 × 105 mm3) Ce:LYSO crystal delivers a broadband spectrum (60 nm FWHM) centered at 430 nm. At full output aperture (20 × 1 mm2), it emits a peak power of 116 W. On a squared output surface (1 × 1 mm2) it emits 16 W corresponding to a brightness of 509 W cm-2 sr-1. This combination of spectrum power and brightness is higher than blue LEDs and opens perspectives for Ce:LYSO in the field of illumination namely for imaging.

5.
Opt Lett ; 47(14): 3543-3546, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35838723

ABSTRACT

The LED-pumping technology is used for the first time, to the best of our knowledge, to develop a complete master oscillator power amplifier (MOPA) system including a multipass amplifier. A pumping head using an original slab architecture is developed integrating a Cr:LiSAF slab pumped by 2112 blue LEDs via a Ce:YAG luminescent concentrator. The slab configuration enables the reaching of a large number of passes-up to 22-together with access to efficient cooling, allowing for a repetition rate scale up. For 22 passes, the amplifier delivers pulses with energy up to 2.4 mJ at 10-Hz repetition rate with a gain of 4.36 at 825 nm. A complete study of the MOPA is described, concluding in nearly constant performances versus the repetition rate, up to 100 Hz.

6.
Opt Express ; 29(16): 25302-25313, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34614863

ABSTRACT

We report the development of a high-brightness, high-power Ce:YAG luminescent concentrator pumped by 2240 blue LEDs in quasi-continuous wave operation (10 µs, 10  Hz). Using light confinement and recycling in the three space dimensions, the parallelepiped (1mm×14×mm×200mm) Ce:YAG emits a power of 145 W from a square output surface (1 × 1mm2) corresponding to a brightness of 4.6 kW/cm2/sr. This broadband yellow source has a unique combination of luminous flux (7.6 104 lm) and brightness (2.4 104 cd/mm2) and overcomes many other visible incoherent sources by one order of magnitude. This paper also proposes a deep understanding of the performance drop compared to a linear behavior when the pump power increases. Despite excited state absorption was unexpected for this low doped Ce:YAG pumped at a low irradiance level, we demonstrated that it affects the performance by tripling the losses in the concentrator. This effect is particularly important for small output surfaces corresponding to strong light recycling in the concentrator and to average travel distances inside the medium reaching meters.

7.
Opt Lett ; 46(10): 2421-2424, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33988599

ABSTRACT

We report on the first, to the best of our knowledge, LED-pumped femtosecond regenerative amplifier. It is based on a Cr:LiSAF crystal pumped by 2240 blue LEDs via a Ce:YAG luminescent concentrator. The amplifier was seeded by pulses from a Ti:sapphire oscillator at 835 nm temporally stretched from 90 fs to 100 ps. At the output of the regenerative amplifier, we obtain 1 mJ pulse energy at a 10 Hz repetition rate, given by the frequency of the LED-pumping module. After compression, we obtain 100 fs pulses with a spectral bandwidth of 10 nm at 835 nm.

8.
Opt Express ; 29(5): 6915-6926, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33726202

ABSTRACT

A solution to develop high-brightness incoherent sources consists in luminescent concentration. Indeed, the absorption/emission process in a high index medium allows us to circumvent the brightness conservation law by the confinement of the light in 1 or 2 dimensions. In practice, Ce-doped luminescent concentrators pumped with InGaN LED exceed LED's brightness by one order of magnitude. This work shows how light confinement in 3 dimensions increases the brightness by an additional order of magnitude. Thanks to an analytical approach validated by experimental results, this concept gives new degrees of freedom for the design of luminescent concentrators and paves the way to a generation of incoherent sources among the brightest ever designed.

9.
Opt Express ; 27(16): 23446-23453, 2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31510620

ABSTRACT

We developed a light-emitting diode (LED)-pumped Cr:LiSAF laser operating in Q-switched and cavity-dumped regimes. The laser produces 1.1 mJ pulses with a pulse duration of 8.5 ns at a repetition rate of 10 Hz on a broad spectrum centered at 840 nm with a full width at half maximum of 23 nm. After frequency tripling in two cascaded LBO crystals, we obtained 7 ns pulses with an energy of 13 µJ at 280 nm and with a spectral width of 0.5 nm, limited by the spectral acceptance of the phase matching process. By rotating both LBO crystals, UV emission is tuned from 276 nm to 284 nm taking advantage of the broad infrared spectrum of the Cr:LiSAF laser.

10.
Opt Lett ; 43(18): 4489-4492, 2018 Sep 15.
Article in English | MEDLINE | ID: mdl-30211897

ABSTRACT

We report, to the best of our knowledge, the first light-emitting diode (LED)-pumped Cr:LiSAF laser, in both quasi-continuous-wave (QCW) and passively Q-switched operation. This Letter is based on the recent development of LED-pumped luminescent concentrators (LCs). Combining the capacity of high-density integration of blue LEDs with the excellent properties of Ce:YAG LCs, this new pump source can deliver high irradiance (7.3 kW/cm2) in the visible to pump Cr:LiSAF. The Cr:LiSAF laser demonstrates an energy of 8.4 mJ at 850 nm in QCW (250 µs pulses at 10 Hz). A small signal gain per roundtrip of 1.44 at 850 nm and a wavelength tunability between 810 and 960 nm have been performed. A passively Q-switched oscillator is also presented using a Cr:YAG saturable absorber. A peak power of 3.1 kW is obtained with a pulse energy of 130 µJ and duration of 41.6 ns.

11.
Opt Express ; 26(7): 9353-9362, 2018 Apr 02.
Article in English | MEDLINE | ID: mdl-29715888

ABSTRACT

The first LED-pumped luminescent concentrator (LC) emitting in the short-wave infrared (SWIR) is reported. Low cost LEDs (at 940 nm) are used to pump a Yb,Er:Glass LC emitting at 1550 nm. The optical conversion efficiency of the system is optimized and studied in detail for several optical configurations. A total of 128 LEDs having an emitting surface of 1 mm2 and an irradiance of 51.6 W/cm2, corresponding to a total pump power of 66 W, are used. Optimizing the output power out of a 100-mm-long LC in a continuous wave regime, a power of 850 mW is extracted from the 2.5 x 2 mm2 LC emitting surface area. The optical efficiency is then 1.29%. The performance of this luminescent concentrator is higher by one order of magnitude in term of radiance compared to an LED emitting at the same wavelength.

12.
Philos Trans A Math Phys Eng Sci ; 376(2113)2018 Feb 28.
Article in English | MEDLINE | ID: mdl-29311204

ABSTRACT

We report on measurements of crystal growth dynamics in semiconducting pure Ge and pure Si melts and in Ge100-x Si x (x = 25, 50, 75) alloy melts as a function of undercooling. Electromagnetic levitation techniques are applied to undercool the samples in a containerless way. The growth velocity is measured by the utilization of a high-speed camera technique over an extended range of undercooling. Solidified samples are examined with respect to their microstructure by scanning electron microscopic investigations. We analyse the experimental results of crystal growth kinetics as a function of undercooling within the sharp interface theory developed by Peter Galenko. Transitions of the atomic attachment kinetics are found at large undercoolings, from faceted growth to dendrite growth.This article is part of the theme issue 'From atomistic interfaces to dendritic patterns'.

13.
Opt Lett ; 42(20): 4191-4194, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-29028045

ABSTRACT

Taking advantage of light-emitting-diode (LED) performance breakthrough driven by the lighting market, we report, to the best of our knowledge, the first LED-pumped chromium-doped crystal laser oscillator and amplifier based on alexandrite crystals (Cr3+:BeAl2O4). We developed a Ce:YAG concentrator as the pumped source, illuminated by blue LEDs that can be easily power scaled. With 2200 LEDs (450 nm), the Ce:YAG concentrator can deliver to the gain medium up to 268 mJ at 10 Hz at 550 nm with a irradiance of 8.5 kW/cm2. We demonstrate, in oscillator configuration, an LED-pumped alexandrite laser delivering an energy of 2.9 mJ at 748 nm in free running operation. In the cavity, we measured a double-pass small signal gain of 1.28, which is in good agreement with numerical simulations. As an amplifier, the system demonstrated to boost a CW Ti:sapphire laser by a factor of 4 at 750 nm in eight passes with a large tuning range from 710 nm to 800 nm.

SELECTION OF CITATIONS
SEARCH DETAIL
...