Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 24(47): 475708, 2013 Nov 29.
Article in English | MEDLINE | ID: mdl-24192567

ABSTRACT

Epitaxial growth of electrodes and tunnel barriers on graphene is one of the main technological bottlenecks for graphene spintronics. In this paper, we demonstrate that MgO(111) epitaxial tunnel barriers, one of the prime candidates for spintronic application, can be grown by molecular beam epitaxy on epitaxial graphene on SiC(0001). Ferromagnetic metals (Fe, Co, Fe20Ni80) were epitaxially grown on top of the MgO barrier, thus leading to monocrystalline electrodes on graphene. Structural and magnetic characterizations were performed on these ferromagnetic metals after annealing and dewetting: they form clusters with a 100 nm typical lateral width, which are mostly magnetic monodomains in the case of Fe. This epitaxial stack opens the way to graphene spintronic devices taking benefits from a coherent tunnelling current through the epitaxial MgO/graphene stack.

2.
Sci Rep ; 3: 2439, 2013.
Article in English | MEDLINE | ID: mdl-23942471

ABSTRACT

The ability to produce large, continuous and defect free films of graphene is presently a major challenge for multiple applications. Even though the scalability of graphene films is closely associated to a manifest polycrystalline character, only a few numbers of experiments have explored so far the electronic structure down to single graphene grains. Here we report a high resolution angle and lateral resolved photoelectron spectroscopy (nano-ARPES) study of one-atom thick graphene films on thin copper foils synthesized by chemical vapor deposition. Our results show the robustness of the Dirac relativistic-like electronic spectrum as a function of the size, shape and orientation of the single-crystal pristine grains in the graphene films investigated. Moreover, by mapping grain by grain the electronic dynamics of this unique Dirac system, we show that the single-grain gap-size is 80% smaller than the multi-grain gap recently reported by classical ARPES.

3.
Biosens Bioelectron ; 50: 239-43, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-23871871

ABSTRACT

The paper reports on a surface plasmon resonance (SPR)-based approach for the sensitive and selective detection of lysozyme. The SPR sensor consists of a 50 nm gold film coated with a thin film of reduced graphene oxide (rGO) functionalized with anti-lysozyme DNA aptamer. The SPR chip coating with rGO matrix was achieved through electrophoretic deposition of graphene oxide (GO) at 150 V. Electrophoretic deposition resulted in partial reduction of GO to rGO with a thickness depending on the deposition time. For very short time pulses of 20 s, the resulting rGO film had a thickness of several nanometers and was appropriate for SPR sensing. The utility of the graphene-based SPR sensor for the selective and sensitive detection of proteins was demonstrated using lysozyme as model protein. Functionalization of rGO matrix with anti-lysozyme DNA aptamer through π-stacking interactions allowed selective SPR detection of lysozyme. The graphene-based SPR biosensor provides a means for the label-free, concentration-dependent and selective detection of lysozymes with a detection limit of 0.5 nM.


Subject(s)
Aptamers, Nucleotide/chemistry , Graphite/chemistry , Muramidase/analysis , Surface Plasmon Resonance/instrumentation , Limit of Detection , Oxides/chemistry , Surface Properties
4.
Analyst ; 138(15): 4345-52, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23730686

ABSTRACT

Conducting interfaces modified with reduced graphene oxide (rGO) have shown improved electrochemical response for different analytes. The efficient formation of functionalized rGO based materials is thus of current interest for the development of sensitive and selective biosensors. Herein, we report a simple and environmentally friendly method for the formation of a hemin-functionalized rGO hybrid nanomaterial that exhibits remarkable sensitivity to peroxynitrite (ONOO(-)) in solution. The hemin-functionalized rGO hybrid nanomaterial was formed by mixing an aqueous solution of graphene oxide (GO) with hemin and sonicating the suspension for 5 h at room temperature. In addition to playing a key role in biochemical and electrocatalytic reactions, hemin has been proven to be a good reducing agent for GO. The sensitivity of the peroxynitrite sensor is ≈7.5 ± 1.5 nA mM(-1) with a detection limit of 5 ± 1.5 nM.


Subject(s)
Graphite/chemistry , Hemin/chemistry , Oxides/chemistry , Peroxynitrous Acid/chemistry , Photoelectron Spectroscopy/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...