Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 112
Filter
1.
Adv Med Educ Pract ; 15: 565-573, 2024.
Article in English | MEDLINE | ID: mdl-38884013

ABSTRACT

The field of medicine is quickly evolving and becoming increasingly more multidisciplinary and technologically demanding. Medical education, however, does not yet adequately reflect these developments and new challenges, which calls for a reform in the way aspiring medical professionals are taught and prepared for the workplace. The present article presents an attempt to address this shortcoming in the form of a newly conceptualized course for medical students with a focus on the current demands and trends in modern neurosurgery. Competency-based education is introduced as a conceptual framework comprising academic and operational competence as well as life-world becoming. This framework provides a sound educational foundation for future medical professionals, equipping them with the knowledge as well as skills needed to successfully navigate the medical field in the current day and age. Three competencies are identified that are central to day-to-day medical practice, namely digitalization, multidisciplinarity, and the impact of recent developments on the changing patient-practitioner relationship. These competencies are relevant for all medical disciplines, but are demonstrated here in a neurosurgical context and visualized using a real patient's case study. Students follow this sample patient's way through each step of the neurosurgical workflow, from planning to performing the procedure, and can see for themselves the importance and application of the aforementioned competencies based on this real-world example. Courses such as the one presented here may prepare medical students more adequately for their future work by combining theoretical and practical skills and critical reflection, thereby providing holistic and practical insights as well as a conceptual framework for their future careers.

2.
Neuropsychologia ; 201: 108940, 2024 Aug 13.
Article in English | MEDLINE | ID: mdl-38876372

ABSTRACT

Navigated Transcranial Magnetic Stimulation (nTMS) is commonly used to causally identify cortical regions involved in language processing. Combining tractography with nTMS has been shown to increase induced error rates by targeting stimulation of cortical terminations of white matter fibers. According to functional Magnetic Resonance Imaging (fMRI) data, bilateral cortical areas connected by the arcuate fasciculus (AF) have been implicated in the processing of transitive compared to unergative verbs. To test this connection between transitivity and bilateral perisylvian regions, we administered a tractography-based inhibitory nTMS protocol during action naming of finite transitive (The man reads) and unergative (The man sails) verbs. After tracking the left and right AF, we stimulated the cortical terminations of the tract in frontal, parietal and temporal regions in 20 neurologically healthy native speakers of German. Results revealed that nTMS induced more errors during transitive compared to unergative verb naming when stimulating the left (vs right) AF terminations. This effect was specific to the left temporal terminations of the AF, whereas no differences between the two verb types were identified when stimulating inferior parietal and frontal AF terminations. Induced errors for transitive verbs over left temporal terminations mostly manifested as access errors (i.e., hesitations). Given the inhibitory nature of our nTMS protocol, these results suggest that temporal regions of the left hemisphere play a crucial role in argument structure processing. Our findings align with previous data on the role of left posterior temporal regions in language processing and by providing further evidence from a language production experiment using tractography-based inhibitory nTMS.


Subject(s)
Cerebral Cortex , Diffusion Tensor Imaging , Transcranial Magnetic Stimulation , Humans , Male , Adult , Female , Young Adult , Cerebral Cortex/physiology , Cerebral Cortex/diagnostic imaging , Brain Mapping , Language , Magnetic Resonance Imaging , Inhibition, Psychological , Functional Laterality/physiology
3.
Front Oncol ; 14: 1368924, 2024.
Article in English | MEDLINE | ID: mdl-38737898

ABSTRACT

Objective: Surgical resection of motor eloquent tumors poses the risk of causing postoperative motor deficits which leads to reduced quality of life in these patients. Currently, rehabilitative procedures are limited with physical therapy being the main treatment option. This study investigated the efficacy of repetitive navigated transcranial magnetic stimulation (rTMS) for treatment of motor deficits after supratentorial tumor resection. Methods: This randomized, double-blind, sham-controlled trial (DRKS00010043) recruited patients with a postoperatively worsened upper extremity motor function immediately postoperatively. They were randomly assigned to receive rTMS (1Hz, 110% RMT, 15 minutes, 7 days) or sham stimulation to the motor cortex contralateral to the injury followed by physical therapy. Motor and neurological function as well as quality of life were assessed directly after the intervention, one month and three months postoperatively. Results: Thirty patients were recruited for this study. There was no significant difference between both groups in the primary outcome, the Fugl Meyer score three months postoperatively [Group difference (95%-CI): 5.05 (-16.0; 26.1); p=0.631]. Patients in the rTMS group presented with better hand motor function one month postoperatively. Additionally, a subgroup of patients with motor eloquent ischemia showed lower NIHSS scores at all timepoints. Conclusions: Low-frequency rTMS facilitated the recovery process in stimulated hand muscles, but with limited generalization to other functional deficits. Long-term motor deficits were not impacted by rTMS. Given the reduced life expectancy in these patients a shortened recovery duration of deficits can still be of high significance. Clinical Trial Registration: https://drks.de/DRKS00010043.

4.
J Neurosurg Pediatr ; 34(1): 19-29, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38669716

ABSTRACT

OBJECTIVE: Language dominance in the developing brain can vary widely across anatomical and pathological conditions as well as age groups. Repetitive navigated transcranial magnetic stimulation (rnTMS) has been applied to calculate the hemispheric dominance ratio (HDR) in adults. In this study, the authors aimed to assess the feasibility of using rnTMS to identify language lateralization in a pediatric neurosurgical cohort and to correlate the preoperative rnTMS findings with the postoperative language outcome. METHODS: A consecutive prospectively collected cohort of 19 children with language-associated lesions underwent bihemispheric rnTMS mapping prior to surgery (100 stimulation sites on each hemisphere). In addition to feasibility and adverse effects, the HDR (ratio of the left hemisphere to right hemisphere error rate) was calculated. The anatomical surgical site and postoperative language outcome at 3 months after surgery were assessed according to clinical documentation. RESULTS: Repetitive nTMS mapping was feasible in all 19 children (mean age 12.5 years, range 4-17 years; 16 left-sided lesions) without any relevant adverse events. Thirteen children (68%) showed left hemispheric dominance (HDR > 1.1), and 2 children (11%) showed right hemispheric dominance (HDR < 0.9). In 4 children (21%), the bihemispheric error rates were nearly the same (HDR ≥ 0.9 and ≤ 1.1). Sixteen children underwent surgery (14 tumor/lesion resections and 2 hemispherotomies) and 3 patients continued conservative therapy. After surgery, 4 patients (25%) showed an improvement in language function, 10 (63%) presented with stable language function, and 2 (12.5%) experienced deterioration in language function. Of the 6 patients with right hemispheric language involvement, 4 (80%) had glial tumors, 1 (20%) had focal cortical dysplasia, and 1 (20%) experienced hypoxic brain injury. Children with right hemispheric language involvement (HDR ≤ 1.1) did not show any language deterioration postoperatively. CONCLUSIONS: Bihemispheric rnTMS language mapping as a noninvasive mapping technique to assess lateralization of language function in the pediatric neurosurgical population is safe and feasible. Why relevant right hemispheric language function (HDR ≤ 1.1) was associated with postoperative unaltered language function needs to be validated in future studies. Bihemispheric rnTMS language mapping strengthens risk-benefit considerations prior to pediatric tumor/epilepsy surgery in language-associated areas.


Subject(s)
Neuronavigation , Transcranial Magnetic Stimulation , Humans , Child , Male , Female , Adolescent , Child, Preschool , Transcranial Magnetic Stimulation/methods , Neuronavigation/methods , Prospective Studies , Language , Functional Laterality/physiology , Brain Mapping/methods , Brain Neoplasms/surgery , Feasibility Studies , Neurosurgical Procedures/methods , Treatment Outcome
5.
Brain Spine ; 4: 102753, 2024.
Article in English | MEDLINE | ID: mdl-38510608

ABSTRACT

Introduction: Surgery on the brainstem level is associated with a high-risk of postoperative morbidity. Recently, we have introduced the combination of navigated transcranial magnetic stimulation (nTMS) and diffusion tensor imaging (DTI) tractography to define functionally relevant motor fibers tracts on the brainstem level to support operative planning and risk stratification in brainstem cavernomas. Research question: Evaluate this method and assess it's clinical impact for the surgery of brainstem gliomas. Material and methods: Patients with brainstem gliomas were examined preoperatively with motor nTMS and DTI tractography. A fractional anisotropy (FA) value of 75% of the individual FA threshold (FAT) was used to track descending corticospinal (CST) and -bulbar tracts (CBT). The distance between the tumor and the somatotopic tracts (hand, leg, face) was measured and diffusion parameters were correlated to the patients' outcome. Results: 12 patients were enrolled in this study, of which 6 underwent surgical resection, 5 received a stereotactic biopsy and 1 patient received conservative treatment. In all patients nTMS mapping and somatotopic tractography were performed successfully. Low FA values correlated with clinical symptoms revealing tract alteration by the tumor (p = 0.049). A tumor-tract distance (TTD) above 2 mm was the critical limit to achieve a safe complete tumor resection. Discussion and conclusion: nTMS based DTI tractography combined with local diffusion analysis is a valuable tool for preoperative visualization and functional assessment of relevant motor fiber tracts, improving planning of safe entry corridors and perioperative risk stratification in brainstem gliomas tumors. This technique allows for customized treatment strategy to maximize patients' safety.

6.
World Neurosurg ; 186: e35-e47, 2024 06.
Article in English | MEDLINE | ID: mdl-38272307

ABSTRACT

OBJECTIVE: This prospective study assesses the acceptance and usefulness of augmented 360° virtual reality (VR) videos for early student education and preparation in the field of neurosurgery. METHODS: Thirty-five third-year medical students participated. Augmented 360° VR videos depicting three neurosurgical procedures (lumbar discectomy, brain metastasis resection, clipping of an aneurysm) were presented during elective seminars. Multiple questionnaires were employed to evaluate conceptual and technical aspects of the videos. The analysis utilized ordinal logistic regression to identify crucial factors contributing to the learning experience of the videos. RESULTS: The videos were consistently rated as good to very good in quality, providing detailed demonstrations of intraoperative anatomy and surgical workflow. Students found the videos highly useful for their learning and preparation for surgical placements, and they strongly supported the establishment of a VR lounge for additional self-directed learning. Notably, 81% reported an increased interest in neurosurgery, and 47% acknowledged the potential influence of the videos on their future choice of specialization. Factors associated with a positive impact on students' interest and learning experience included high technical quality and comprehensive explanations of the surgical steps. CONCLUSIONS: This study demonstrated the high acceptance of augmented 360° VR videos as a valuable tool for early student education in neurosurgery. While hands-on training remains indispensable, these videos promote conceptual knowledge, ignite interest in neurosurgery, and provide a much-needed orientation within the operating room. The incorporation of detailed explanations throughout the surgeries with augmentation using superimposed elements, offers distinct advantages over simply observing live surgeries.


Subject(s)
Neurosurgery , Students, Medical , Virtual Reality , Humans , Neurosurgery/education , Female , Prospective Studies , Male , Neurosurgical Procedures/education , Neurosurgical Procedures/methods , Augmented Reality , Adult , Young Adult , Imaging, Three-Dimensional/methods , Video Recording
7.
Front Neurosci ; 17: 1255209, 2023.
Article in English | MEDLINE | ID: mdl-37859763

ABSTRACT

Background: The supplementary motor area (SMA) is important for motor and language function. Damage to the SMA may harm these functions, yet tools for a preoperative assessment of the area are still sparse. Objective: The aim of this study was to validate a mapping protocol using repetitive navigated transcranial magnetic stimulation (rnTMS) and extend this protocol for both hemispheres and lower extremities. Methods: To this purpose, the SMA of both hemispheres were mapped based on a finger tapping task for 30 healthy subjects (35.97 ± 15.11, range 21-67 years; 14 females) using rnTMS at 20 Hz (120% resting motor threshold (RMT)) while controlling for primary motor cortex activation. Points with induced errors were marked on the corresponding MRI. Next, on the identified SMA hotspot a bimanual finger tapping task and the Nine-Hole Peg Test (NHPT) were performed. Further, the lower extremity was mapped at 20 Hz (140%RMT) using a toe tapping task. Results: Mean finger tapping scores decreased significantly during stimulation (25.70taps) compared to baseline (30.48; p < 0.01). Bimanual finger tapping led to a significant increase in taps during stimulation (28.43taps) compared to unimanual tapping (p < 0.01). Compared to baseline, completion time for the NHPT increased significantly during stimulation (baseline: 13.6 s, stimulation: 16.4 s; p < 0.01). No differences between hemispheres were observed. Conclusion: The current study validated and extended a rnTMS based protocol for the mapping of the SMA regarding motor function of upper and lower extremity. This protocol could be beneficial to better understand functional SMA organisation and improve preoperative planning in patients with SMA lesions.

8.
Trials ; 24(1): 638, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37794435

ABSTRACT

BACKGROUND: The extent of resection of glioma is one of the most important predictors of the survival duration of patients after surgery. The presence of eloquent areas within or near a tumor often limits resection, as resection of these areas would result in functional loss and reduced quality of life. The aim of this randomized, triple-blind, sham-controlled study is to investigate the capability of repetitive navigated transcranial magnetic stimulation (rnTMS) over the primary motor cortex to facilitate the functional reorganization of the motor network. METHODS: One hundred forty-eight patients with tumors in movement-relevant areas will be included in this randomized, sham-controlled, bicentric, triple-blind clinical trial. Patients considered at high risk for postoperative motor deficits according to an initial nTMS assessment will receive inhibitory rnTMS at 1 Hz for 30 min followed by a short motor training of 10 min. Stimulation will be applied to the fiber endings of the corticospinal tract closest to the tumor based on individualized tractography. Stimulation will be performed twice daily for each 30 min for 5-28 days depending on the individually available time between study inclusion and surgery. The intervention is controlled by a sham stimulation group (1:1 randomization), where a plastic adapter will be placed on the coil. We expect a comparable or better motor status 3 months postoperatively as measured by the British Medical Research Council (BMRC) score for the affected upper extremity (non-inferiority) and a higher rate of gross total resections (superiority) in the rnTMS compared to the sham group. DISCUSSION: The generated reorganization of the brain's areas for motor function should allow a more extensive and safer removal of the tumor while preserving neurological and motor function. This would improve both survival and quality of life of our patients. TRIAL REGISTRATION: DRKS.de DRKS00017232 . Registered on 28 January 2020.


Subject(s)
Brain Neoplasms , Glioma , Humans , Transcranial Magnetic Stimulation/adverse effects , Transcranial Magnetic Stimulation/methods , Brain Neoplasms/surgery , Quality of Life , Glioma/surgery , Upper Extremity , Randomized Controlled Trials as Topic
9.
JAMA Neurol ; 80(11): 1222-1231, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37747720

ABSTRACT

Importance: The prognosis of overall survival (OS) in patients with glioblastoma (GBM) may depend on the underlying structural connectivity of the brain. Objective: To examine the association between white matter tracts affected by GBM and patients' OS by means of a new tract density index (TDI). Design, Setting, and Participants: This prognostic study in patients with a histopathologic diagnosis of GBM examined a discovery cohort of 112 patients who underwent surgery between February 1, 2015, and November 30, 2020 (follow-up to May 31, 2023), in Italy and 70 patients in a replicative cohort (n = 70) who underwent surgery between September 1, 2012, and November 30, 2015 (follow-up to May 31, 2023), in Germany. Statistical analyses were performed from June 1, 2021, to May 31, 2023. Thirteen and 12 patients were excluded from the discovery and the replicative sets, respectively, because of magnetic resonance imaging artifacts. Exposure: The density of white matter tracts encompassing GBM. Main Outcomes and Measures: Correlation, linear regression, Cox proportional hazards regression, Kaplan-Meier, and prediction analysis were used to assess the association between the TDI and OS. Results were compared with common prognostic factors of GBM, including age, performance status, O6-methylguanine-DNA methyltransferase methylation, and extent of surgery. Results: In the discovery cohort (n = 99; mean [SD] age, 62.2 [11.5] years; 29 female [29.3%]; 70 male [70.7%]), the TDI was significantly correlated with OS (r = -0.34; P < .001). This association was more stable compared with other prognostic factors. The TDI showed a significant regression pattern (Cox: hazard ratio, 0.28 [95% CI, 0.02-0.55; P = .04]; linear: t = -2.366; P = .02). and a significant Kaplan-Meier stratification of patients as having lower or higher OS based on the TDI (log-rank test = 4.52; P = .03). Results were confirmed in the replicative cohort (n = 58; mean [SD] age, 58.5 [11.1] years, 14 female [24.1%]; 44 male [75.9%]). High (24-month cutoff) and low (18-month cutoff) OS was predicted based on the TDI computed in the discovery cohort (accuracy = 87%). Conclusions and Relevance: In this study, GBMs encompassing regions with low white matter tract density were associated with longer OS. These findings indicate that the TDI is a reliable presurgical outcome predictor that may be considered in clinical trials and clinical practice. These findings support a framework in which the outcome of GBM depends on the patient's brain organization.


Subject(s)
Brain Neoplasms , Glioblastoma , White Matter , Humans , Male , Female , Middle Aged , Glioblastoma/diagnostic imaging , Glioblastoma/surgery , Glioblastoma/drug therapy , White Matter/diagnostic imaging , White Matter/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/genetics , Prognosis , Brain/pathology , Retrospective Studies
10.
Front Neurosci ; 17: 1185483, 2023.
Article in English | MEDLINE | ID: mdl-37332876

ABSTRACT

Background: Damage to the supplementary motor area (SMA) can lead to impairments of motor and language function. A detailed preoperative mapping of functional boarders of the SMA could therefore aid preoperative diagnostics in these patients. Objective: The aim of this study was the development of a repetitive nTMS protocol for non-invasive functional mapping of the SMA while assuring effects are caused by SMA rather than M1 activation. Methods: The SMA in the dominant hemisphere of 12 healthy subjects (28.2 ± 7.7 years, 6 females) was mapped using repetitive nTMS at 20 Hz (120% RMT), while subjects performed a finger tapping task. Reductions in finger taps were classified in three error categories (≤15% = no errors, 15-30% = mild, >30% significant). The location and category of induced errors was marked in each subject's individual MRI. Effects of SMA stimulation were then directly compared to effects of M1 stimulation in four different tasks (finger tapping, writing, line tracing, targeting circles). Results: Mapping of the SMA was possible for all subjects, yet effect sizes varied. Stimulation of the SMA led to a significant reduction of finger taps compared to baseline (BL: 45taps, SMA: 35.5taps; p < 0.01). Line tracing, writing and targeting of circles was less accurate during SMA compared to M1 stimulation. Conclusion: Mapping of the SMA using repetitive nTMS is feasible. While errors induced in the SMA are not entirely independent of M1, disruption of the SMA induces functionally distinct errors. These error maps can aid preoperative diagnostics in patients with SMA related lesions.

11.
Hum Brain Mapp ; 44(12): 4480-4497, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37318944

ABSTRACT

White matter impairments caused by gliomas can lead to functional disorders. In this study, we predicted aphasia in patients with gliomas infiltrating the language network using machine learning methods. We included 78 patients with left-hemispheric perisylvian gliomas. Aphasia was graded preoperatively using the Aachen aphasia test (AAT). Subsequently, we created bundle segmentations based on automatically generated tract orientation mappings using TractSeg. To prepare the input for the support vector machine (SVM), we first preselected aphasia-related fiber bundles based on the associations between relative tract volumes and AAT subtests. In addition, diffusion magnetic resonance imaging (dMRI)-based metrics [axial diffusivity (AD), apparent diffusion coefficient (ADC), fractional anisotropy (FA), and radial diffusivity (RD)] were extracted within the fiber bundles' masks with their mean, standard deviation, kurtosis, and skewness values. Our model consisted of random forest-based feature selection followed by an SVM. The best model performance achieved 81% accuracy (specificity = 85%, sensitivity = 73%, and AUC = 85%) using dMRI-based features, demographics, tumor WHO grade, tumor location, and relative tract volumes. The most effective features resulted from the arcuate fasciculus (AF), middle longitudinal fasciculus (MLF), and inferior fronto-occipital fasciculus (IFOF). The most effective dMRI-based metrics were FA, ADC, and AD. We achieved a prediction of aphasia using dMRI-based features and demonstrated that AF, IFOF, and MLF were the most important fiber bundles for predicting aphasia in this cohort.


Subject(s)
Aphasia , Glioma , White Matter , Humans , Diffusion Tensor Imaging/methods , Benchmarking , Glioma/complications , Glioma/diagnostic imaging , Glioma/pathology , Aphasia/diagnostic imaging , Aphasia/etiology , Aphasia/pathology , Diffusion Magnetic Resonance Imaging , White Matter/pathology , Machine Learning
12.
Neuroimage Clin ; 38: 103436, 2023.
Article in English | MEDLINE | ID: mdl-37236052

ABSTRACT

BACKGROUND: Two statistical models have been established to evaluate characteristics associated with postoperative motor outcome in patients with glioma associated to the motor cortex (M1) or the corticospinal tract (CST). One model is based on a clinicoradiological prognostic sum score (PrS) while the other one relies on navigated transcranial magnetic stimulation (nTMS) and diffusion-tensor-imaging (DTI) tractography. The objective was to compare the models regarding their prognostic value for postoperative motor outcome and extent of resection (EOR) with the aim of developing a combined, improved model. METHODS: We retrospectively analyzed a consecutive prospective cohort of patients who underwent resection for motor associated glioma between 2008 and 2020, and received a preoperative nTMS motor mapping with nTMS-based diffusion tensor imaging tractography. The primary outcomes were the EOR and the motor outcome (on the day of discharge and 3 months postoperatively according to the British Medical Research Council (BMRC) grading). For the nTMS model, the infiltration of M1, tumor-tract distance (TTD), resting motor threshold (RMT) and fractional anisotropy (FA) were assesed. For the PrS score (ranging from 1 to 8, lower scores indicating a higher risk), we assessed tumor margins, volume, presence of cysts, contrast agent enhancement, MRI index (grading white matter infiltration), preoperative seizures or sensorimotor deficits. RESULTS: Two hundred and three patients with a median age of 50 years (range: 20-81 years) were analyzed of whom 145 patients (71.4%) received a GTR. The rate of transient new motor deficits was 24.1% and of permanent new motor deficits 18.8%. The nTMS model demonstrated a good discrimination ability for the short-term motor outcome at day 7 of discharge (AUC = 0.79, 95 %CI: 0.72-0.86) and the long-term motor outcome after 3 months (AUC = 0.79, 95 %CI: 0.71-0.87). The PrS score was not capable to predict the postoperative motor outcome in this cohort but was moderately associated with the EOR (AUC = 0.64; CI 0.55-0.72). An improved, combined model was calculated to predict the EOR more accurately (AUC = 0.74, 95 %CI: 0.65-0.83). CONCLUSION: The nTMS model was superior to the clinicoradiological PrS model for potentially predicting the motor outcome. A combined, improved model was calculated to estimate the EOR. Thus, patient counseling and surgical planning in patients with motor-associated tumors should be performed using functional nTMS data combined with tractography.


Subject(s)
Brain Neoplasms , Glioma , Humans , Young Adult , Adult , Middle Aged , Aged , Aged, 80 and over , Transcranial Magnetic Stimulation/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/surgery , Brain Neoplasms/pathology , Diffusion Tensor Imaging/methods , Retrospective Studies , Prospective Studies , Brain Mapping/methods , Glioma/diagnostic imaging , Glioma/surgery , Glioma/pathology , Risk Assessment
13.
Clin Neurophysiol ; 150: 131-175, 2023 06.
Article in English | MEDLINE | ID: mdl-37068329

ABSTRACT

The review provides a comprehensive update (previous report: Chen R, Cros D, Curra A, Di Lazzaro V, Lefaucheur JP, Magistris MR, et al. The clinical diagnostic utility of transcranial magnetic stimulation: report of an IFCN committee. Clin Neurophysiol 2008;119(3):504-32) on clinical diagnostic utility of transcranial magnetic stimulation (TMS) in neurological diseases. Most TMS measures rely on stimulation of motor cortex and recording of motor evoked potentials. Paired-pulse TMS techniques, incorporating conventional amplitude-based and threshold tracking, have established clinical utility in neurodegenerative, movement, episodic (epilepsy, migraines), chronic pain and functional diseases. Cortical hyperexcitability has emerged as a diagnostic aid in amyotrophic lateral sclerosis. Single-pulse TMS measures are of utility in stroke, and myelopathy even in the absence of radiological changes. Short-latency afferent inhibition, related to central cholinergic transmission, is reduced in Alzheimer's disease. The triple stimulation technique (TST) may enhance diagnostic utility of conventional TMS measures to detect upper motor neuron involvement. The recording of motor evoked potentials can be used to perform functional mapping of the motor cortex or in preoperative assessment of eloquent brain regions before surgical resection of brain tumors. TMS exhibits utility in assessing lumbosacral/cervical nerve root function, especially in demyelinating neuropathies, and may be of utility in localizing the site of facial nerve palsies. TMS measures also have high sensitivity in detecting subclinical corticospinal lesions in multiple sclerosis. Abnormalities in central motor conduction time or TST correlate with motor impairment and disability in MS. Cerebellar stimulation may detect lesions in the cerebellum or cerebello-dentato-thalamo-motor cortical pathways. Combining TMS with electroencephalography, provides a novel method to measure parameters altered in neurological disorders, including cortical excitability, effective connectivity, and response complexity.


Subject(s)
Alzheimer Disease , Amyotrophic Lateral Sclerosis , Nervous System Diseases , Humans , Transcranial Magnetic Stimulation/methods , Evoked Potentials, Motor/physiology
14.
Cortex ; 162: 38-55, 2023 05.
Article in English | MEDLINE | ID: mdl-36965338

ABSTRACT

Transcranial magnetic stimulation (TMS) has provided relevant evidence regarding the neural correlates of language. The aim of the present study is to summarize and assess previous findings regarding linguistic levels (i.e., semantic and morpho-syntactic) and brain structures utilized during verb and sentence processing. To do that, we systematically reviewed TMS research on verb and sentence processing in healthy speakers, and meta-analyzed TMS-induced effects according to the region of stimulation and experimental manipulation. Findings from 45 articles show that approximately half of the reviewed work focuses on the embodiment of action verbs. The majority of studies (60%) target only one cortical region in relation to a specific linguistic process. Frontal areas are most frequently stimulated in connection to morphosyntactic processes and action verb semantics, and temporoparietal regions in relation to integration of sentential meaning and thematic role assignment. A meta-analysis of 72 effect sizes of the reviewed papers indicates that TMS has a small overall effect size, but effect sizes for anterior compared to posterior regions do not differ for semantic or morphosyntactic contrasts. Our findings stress the need to increase the number of targeted areas, while using the same linguistic contrasts in order to disentangle the contributions of different cortical regions to distinct linguistic processes.


Subject(s)
Language , Transcranial Magnetic Stimulation , Humans , Semantics , Linguistics , Brain/physiology , Comprehension/physiology
15.
Acta Neurochir (Wien) ; 165(4): 1087-1098, 2023 04.
Article in English | MEDLINE | ID: mdl-36853569

ABSTRACT

BACKGROUND: Informed consent of the patient prior to surgical procedures is obligatory. A good and informative communication improves patients' understanding and confidence, thus may strengthen the patient-doctor relationship. The aim of our study was to investigate the usefulness of additional stereoscopic visualization of patient-specific imaging during informed consent conversation. METHODS: Patients scheduled for a brain tumor surgery were screened for this study prospectively. The primary exclusion criteria were cognitive or visual impairments. The participants were randomized into two groups. The first group underwent a conventional surgical informed consent performed by a neurosurgeon including a demonstration of the individual MRI on a 2D computer screen. The second group received an additional stereoscopic visualization of the same imaging to explain the pathology more in-depth. The patients were then asked to fill in a questionnaire after each part. This questionnaire was designed to assess the potential information gained from the patients with details on the anatomical location of the tumor as well as the surgical procedure and possible complications. Patients' subjective impression about the informed consent was assessed using a 5-point Likert scale. RESULTS: A total of 27 patients were included in this study. After additional stereoscopic visualization, no significant increase in patient understanding was found for either objective criteria or subjective assessment. Participants' anxiety was not increased by stereoscopic visualization. Overall, patients perceived stereoscopic imaging as helpful from a subjective perspective. Confidence in the department was high in both groups. CONCLUSION: Stereoscopic visualization of MRI images within informed consent conversation did not improve the objective understanding of the patients in our series. Although no objective anatomical knowledge gain was noted in this series, patients felt that the addition of stereoscopic visualization improved their overall understanding. It therefore potentially increases patient confidence in treatment decisions.


Subject(s)
Neurosurgery , Humans , Informed Consent , Neurosurgical Procedures , Surveys and Questionnaires
16.
Chirurgie (Heidelb) ; 94(4): 299-306, 2023 Apr.
Article in German | MEDLINE | ID: mdl-36629923

ABSTRACT

BACKGROUND: The medical technical innovations over the last decade have made operations in the highly sensitive regions of the brain much safer. OBJECTIVE: Presentation of how far computer assistance and robotics have become incorporated into clinical neurosurgery. MATERIAL AND METHOD: Evaluation of the scientific literature and analysis of the certification status of the corresponding medical devices. RESULTS: The rapid development of computer technology and the switch to digital imaging has led to the widespread introduction of neurosurgical planning software and intraoperative neuronavigation. In the field of robotics, the penetration into clinical neurosurgery is currently still largely limited to the automatic setting of trajectories. CONCLUSION: The digitalization of imaging has fundamentally transformed neurosurgery. In the field of cranial neurosurgery, computer-assisted procedures can now be distinguished from noncomputer-assisted procedures only in a handful of cases. In the coming years important innovations for the clinical implementation can be expected in the field of robotics.


Subject(s)
Neurosurgery , Robotics , Neurosurgery/methods , Neurosurgical Procedures/methods , Neuronavigation/methods , Computers
17.
J Neuropsychol ; 17(2): 400-416, 2023 06.
Article in English | MEDLINE | ID: mdl-36651346

ABSTRACT

People with tumours in specific brain sites might face difficulties in tasks with different linguistic material. Previous lesion-symptom mapping studies (VLSM) demonstrated that people with tumours in posterior temporal regions have more severe linguistic impairments. However, to the best of our knowledge, preoperative performance and lesion location on tasks with different linguistic stimuli have not been examined. In the present study, we performed VLSM on 52 people with left gliomas to examine whether tumour distribution differs depending on the tasks of the Aachen Aphasia Test. The VLSM analysis revealed that single-word production (e.g. object naming) was associated with the inferior parietal lobe and that compound and sentence production were additionally associated with posterior temporal gyri. Word repetition was affected in people with tumours in inferior parietal areas, whereas sentence repetition was the only task to be associated with frontal regions. Subcortically, word and sentence production were found to be affected in people with tumours reaching the arcuate fasciculus, and compound production was primarily associated with tumours affecting the inferior longitudinal and inferior fronto-occipital fasciculus. Our work shows that tasks with linguistic stimuli other than single-word naming (e.g. compound and sentence production) relate to additional cortical and subcortical brain areas. At a clinical level, we show that tasks that target the same processes (e.g. repetition) can have different neural correlates depending on the linguistic stimuli used. Also, we highlight the importance of left temporoparietal areas.


Subject(s)
Brain Neoplasms , Language Development Disorders , Humans , Brain Mapping , Brain/pathology , Brain Neoplasms/complications , Brain Neoplasms/pathology , Linguistics , Language Development Disorders/pathology , Magnetic Resonance Imaging
18.
J Neurosurg ; : 1-10, 2022 Dec 02.
Article in English | MEDLINE | ID: mdl-36461815

ABSTRACT

OBJECTIVE: Surgical resection of gliomas involving the supplementary motor area (SMA) frequently results in SMA syndrome, a symptom complex characterized by transient akinesia and mutism. Because the factors influencing patient functional outcomes after surgery remain elusive, the authors investigated network-based predictors in a multicentric cohort of glioma patients. METHODS: The participants were 50 patients treated for glioma located in the SMA at one of the three centers participating in the study. Postoperative functional outcomes (motor deficits, mutism) and duration of symptoms were assessed during hospitalization. Long-term outcome was assessed 3 months after surgery. MRI-based lesion-symptom mapping was performed to estimate the severity of gray matter damage and white matter disconnection. RESULTS: The median duration of acute symptoms was 3 days (range 1-42 days). Long-term deficits involving fine motor movements and speech were found at follow-up in 27 patients (54%). Disconnection of the central callosal fibers was associated with prolonged acute symptoms (p < 0.05). Postoperative mutism was significantly related to disconnection severity of the left frontopontine tract, frontal aslant tract, cingulum, and corticostriatal tract (p < 0.05). Disconnection of midposterior callosal fibers and lesion loads within the left medial Brodmann area 4 were associated with long-term motor deficits (p < 0.05). CONCLUSIONS: This study provides evidence for the pathophysiology and predictive factors of postoperative SMA syndrome by demonstrating the relation of the disconnection of callosal fibers with prolonged symptom duration (central segment) and long-term motor deficits (midposterior segment). These data may be useful for presurgical risk assessment and adequate consultation for patients prior to undergoing resection of glioma located within the SMA region.

19.
Front Oncol ; 12: 1008442, 2022.
Article in English | MEDLINE | ID: mdl-36568245

ABSTRACT

Introduction: This study explores the feasibility of implementing a tractography-based navigated transcranial magnetic stimulation (nTMS) language mapping protocol targeting cortical terminations of the arcuate fasciculus (AF). We compared the results and distribution of errors from the new protocol to an established perisylvian nTMS protocol that stimulated without any specific targeting over the entire perisylvian cortex. Methods: Sixty right-handed patients with language-eloquent brain tumors were examined in this study with one half of the cohort receiving the tractographybased protocol and the other half receiving the perisylvian protocol. Probabilistic tractography using MRtrix3 was performed for patients in the tractography-based group to identify the AF's cortical endpoints. nTMS mappings were performed and resulting language errors were classified into five psycholinguistic groups. Results: Tractography and nTMS were successfully performed in all patients. The tractogram-based group showed a significantly higher median overall ER than the perisylvian group (3.8% vs. 2.9% p <.05). The median ER without hesitation errors in the tractogram-based group was also significantly higher than the perisylvian group (2.0% vs. 1.4%, p <.05). The ERs by error type showed no significant differences between protocols except in the no response ER, with a higher median ER in the tractogram-based group (0.4% vs. 0%, p <.05). Analysis of ERs based on the Corina cortical parcellation system showed especially high nTMS ERs over the posterior middle temporal gyrus (pMTG) in the perisylvian protocol and high ERs over the middle and ventral postcentral gyrus (vPoG), the opercular inferior frontal gyrus (opIFG) and the ventral precentral gyrus (vPrG) in the tractography-based protocol. Discussion: By considering the white matter anatomy and performing nTMS on the cortical endpoints of the AF, the efficacy of nTMS in disrupting patients' object naming abilities was increased. The newly introduced method showed proof of concept and resulted in AF-specific ERs and noninvasive cortical language maps, which could be applied to additional fiber bundles related to the language network in future nTMS studies.

20.
Sci Rep ; 12(1): 22553, 2022 12 29.
Article in English | MEDLINE | ID: mdl-36581741

ABSTRACT

Three-dimensional exoscopes have been designed to overcome certain insufficiencies of operative microscopes. We aimed to explore the clinical use in various spinal surgeries. We performed surgery on patients with different spine entities in a neurosurgical department according to the current standard operating procedures over a 4-week period of time. The microsurgical part has been performed with Aesculap AEOS 3D microscope. Three neurosurgeons with different degree of surgical expertise completed a questionnaire with 43 items based on intraoperative handling and feasibility after the procedures. We collected and analyzed data from seventeen patients (35% male/65% female) with a median age of 70 years [CI 47-86] and median BMI of 25.8 kg/m2 [range 21-33]. We included a variety of spinal pathologies (10 degenerative, 4 tumor and 3 infectious cases) with different level of complexity. Regarding setup conflicts we observed issues with adjustment of the monitor position or while using additional equipment (e.g. fluoroscopy in fusion surgery) (p = 0.007/p = 0.001). However image resolution and sharpness as well as 3D-depth perception were completely satisfactory for all surgeons in all procedures. The utilization of the exoscopic arm was easy for 76.5% of the surgeons, and all of them declared a significant improvement of the surgical corridor. The 3D-exoscope implementation appears to achieve very satisfactory results in spinal procedures especially with minimally invasive approaches.


Subject(s)
Robotic Surgical Procedures , Spine , Aged , Female , Humans , Male , Imaging, Three-Dimensional/methods , Microscopy , Microsurgery/methods , Neurosurgical Procedures/methods , Spine/surgery
SELECTION OF CITATIONS
SEARCH DETAIL
...