Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ArXiv ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38827457

ABSTRACT

Biomarkers enable objective monitoring of a given cell or state in a biological system and are widely used in research, biomanufacturing, and clinical practice. However, identifying appropriate biomarkers that are both robustly measurable and capture a state accurately remains challenging. We present a framework for biomarker identification based upon observability guided sensor selection. Our methods, Dynamic Sensor Selection (DSS) and Structure-Guided Sensor Selection (SGSS), utilize temporal models and experimental data, offering a template for applying observability theory to unconventional data obtained from biological systems. Unlike conventional methods that assume well-known, fixed dynamics, DSS adaptively select biomarkers or sensors that maximize observability while accounting for the time-varying nature of biological systems. Additionally, SGSS incorporates structural information and diverse data to identify sensors which are resilient against inaccuracies in our model of the underlying system. We validate our approaches by performing estimation on high dimensional systems derived from temporal gene expression data from partial observations.

2.
Sensors (Basel) ; 23(18)2023 Sep 14.
Article in English | MEDLINE | ID: mdl-37765941

ABSTRACT

Automation of visual quality inspection tasks in manufacturing with machine vision is beginning to be the de facto standard for quality inspection as manufacturers realize that machines produce more reliable, consistent and repeatable analyses much quicker than a human operator ever could. These methods generally rely on the installation of cameras to inspect and capture images of parts; however, there is yet to be a method proposed for the deployment of cameras which can rigorously quantify and certify the performance of the system when inspecting a given part. Furthermore, current methods in the field yield unrealizable exact solutions, making them impractical or impossible to actually install in a factory setting. This work proposes a set-based method of synthesizing continuous pose intervals for the deployment of cameras that certifiably satisfy constraint-based performance criteria within the continuous interval.

3.
PLoS Comput Biol ; 19(6): e1011190, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37276238

ABSTRACT

Recent advances in biological technologies, such as multi-way chromosome conformation capture (3C), require development of methods for analysis of multi-way interactions. Hypergraphs are mathematically tractable objects that can be utilized to precisely represent and analyze multi-way interactions. Here we present the Hypergraph Analysis Toolbox (HAT), a software package for visualization and analysis of multi-way interactions in complex systems.


Subject(s)
Chromosomes , Software
4.
Sensors (Basel) ; 24(1)2023 Dec 25.
Article in English | MEDLINE | ID: mdl-38202973

ABSTRACT

This work establishes a complete methodology for solving continuous sets of camera deployment solutions for automated machine vision inspection systems in industrial manufacturing facilities. The methods presented herein generate constraints that realistically model cameras and their associated intrinsic parameters and use set-based solving methods to evaluate these constraints over a 3D mesh model of a real part. This results in a complete and certifiable set of all valid camera poses describing all possible inspection poses for a given camera/part pair, as well as how much of the part's surface is inspectable from any pose in the set. These methods are tested and validated experimentally using real cameras and precise 3D tracking equipment and are shown to accurately align with real imaging results according to the hardware they are modelling for a given inspection deployment. In addition, their ability to generate full inspection solution sets is demonstrated on several realistic geometries using realistic factory settings, and they are shown to generate tangible, deployable inspection solutions, which can be readily integrated into real factory settings.

5.
Nat Commun ; 13(1): 5498, 2022 09 20.
Article in English | MEDLINE | ID: mdl-36127324

ABSTRACT

Chromatin architecture, a key regulator of gene expression, can be inferred using chromatin contact data from chromosome conformation capture, or Hi-C. However, classical Hi-C does not preserve multi-way contacts. Here we use long sequencing reads to map genome-wide multi-way contacts and investigate higher order chromatin organization in the human genome. We use hypergraph theory for data representation and analysis, and quantify higher order structures in neonatal fibroblasts, biopsied adult fibroblasts, and B lymphocytes. By integrating multi-way contacts with chromatin accessibility, gene expression, and transcription factor binding, we introduce a data-driven method to identify cell type-specific transcription clusters. We provide transcription factor-mediated functional building blocks for cell identity that serve as a global signature for cell types.


Subject(s)
Chromatin , Genome, Human , Adult , Chromatin/genetics , Chromosomes , Genome, Human/genetics , Humans , Infant, Newborn , Molecular Conformation , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...