Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Oncol ; 13: 1208244, 2023.
Article in English | MEDLINE | ID: mdl-37483495

ABSTRACT

Background: Personalized targeted therapies have transformed management of several solid tumors. Timely and accurate detection of clinically relevant genetic variants in tumor is central to the implementation of molecular targeted therapies. To facilitate precise molecular testing in solid tumors, targeted next-generation sequencing (NGS) assays have emerged as a valuable tool. In this study, we provide an overview of the technical validation, diagnostic yields, and spectrum of variants observed in 3,164 solid tumor samples that were tested as part of the standard clinical diagnostic assessment in an academic healthcare institution over a period of 2 years. Methods: The Ion Ampliseq™ Cancer Hotspot Panel v2 assay (ThermoFisher) that targets ~2,800 COSMIC mutations from 50 oncogenes and tumor suppressor genes was validated, and a total of 3,164 tumor DNA samples were tested in 2 years. A total of 500 tumor samples were tested by the comprehensive panel containing all the 50 genes. Other samples, including 1,375 lung cancer, 692 colon cancer, 462 melanoma, and 135 brain cancer, were tested by tumor-specific targeted subpanels including a few clinically actionable genes. Results: Of 3,164 patient samples, 2,016 (63.7%) tested positive for at least one clinically relevant variant. Of 500 samples tested by a comprehensive panel, 290 had a clinically relevant variant with TP53, KRAS, and PIK3CA being the most frequently mutated genes. The diagnostic yields in major tumor types were as follows: breast (58.4%), colorectal (77.6%), lung (60.4%), pancreatic (84.6%), endometrial (72.4%), ovary (57.1%), and thyroid (73.9%). Tumor-specific targeted subpanels also demonstrated high diagnostic yields: lung (69%), colon (61.2%), melanoma (69.7%), and brain (20.7%). Co-occurrence of mutations in more than one gene was frequently observed. Conclusions: The findings of our study demonstrate the feasibility of integrating an NGS-based gene panel screen as part of a standard diagnostic protocol for solid tumor assessment. High diagnostic rates enable significant clinical impact including improved diagnosis, prognosis, and clinical management in patients with solid tumors.

2.
Prostate ; 79(14): 1705-1714, 2019 10.
Article in English | MEDLINE | ID: mdl-31433512

ABSTRACT

BACKGROUND: We identify and validate accurate diagnostic biomarkers for prostate cancer through a systematic evaluation of DNA methylation alterations. MATERIALS AND METHODS: We assembled three early prostate cancer cohorts (total patients = 699) from which we collected and processed over 1300 prostatectomy tissue samples for DNA extraction. Using real-time methylation-specific PCR, we measured normalized methylation levels at 15 frequently methylated loci. After partitioning sample sets into independent training and validation cohorts, classifiers were developed using logistic regression, analyzed, and validated. RESULTS: In the training dataset, DNA methylation levels at 7 of 15 genomic loci (glutathione S-transferase Pi 1 [GSTP1], CCDC181, hyaluronan, and proteoglycan link protein 3 [HAPLN3], GSTM2, growth arrest-specific 6 [GAS6], RASSF1, and APC) showed large differences between cancer and benign samples. The best binary classifier was the GAS6/GSTP1/HAPLN3 logistic regression model, with an area under these curves of 0.97, which showed a sensitivity of 94%, and a specificity of 93% after external validation. CONCLUSION: We created and validated a multigene model for the classification of benign and malignant prostate tissue. With false positive and negative rates below 7%, this three-gene biomarker represents a promising basis for more accurate prostate cancer diagnosis.


Subject(s)
Biomarkers, Tumor , DNA Methylation/genetics , Prostatic Neoplasms/classification , Prostatic Neoplasms/pathology , DNA/isolation & purification , Epigenesis, Genetic , Extracellular Matrix Proteins/analysis , Extracellular Matrix Proteins/genetics , Glutathione S-Transferase pi/analysis , Glutathione S-Transferase pi/genetics , Humans , Intercellular Signaling Peptides and Proteins/analysis , Intercellular Signaling Peptides and Proteins/genetics , Male , Prostatic Neoplasms/chemistry , Proteoglycans/analysis , Proteoglycans/genetics , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...