Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(6)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35329638

ABSTRACT

The need for rare resources, such as tungsten or cobalt, combined with the high energy requirements to produce cutting materials, is forcing research and development to work out environmentally friendly alternatives. Natural rocks could be an alternative since they are available in large quantities worldwide, have a potentially suitable property profile, and do not require energy-intensive processes to make them usable as cutting materials. However, there are only a few studies on the usability and suitability of natural rocks as cutting materials for machining processes. Therefore, in this article, inserts made of natural rocks were ground and used in turning operations. First, the properties of various natural rocks were determined, as were the tool properties after grinding. Then, the tool load and wear during the machining process were recorded and evaluated to assess the potential applications of this alternative cutting material more accurately. It is therefore becoming apparent that flint and quartz are suitable for use as alternative cutting materials and should be further researched.

2.
Materials (Basel) ; 13(20)2020 Oct 14.
Article in English | MEDLINE | ID: mdl-33066567

ABSTRACT

During metal cutting, high temperatures of several hundred-degree Celsius occur locally at the cutting edge, which greatly impacts tool wear and life. Not only the cutting parameters, but also the tool material's properties influence the arising cutting temperature which in turn alters the mechanical properties of the tool. In this study, the hardness and thermal conductivity of cemented tungsten carbides were investigated in the range between room temperature and 1000 °C. The occurring temperatures close to the cutting edge were measured with two color pyrometry. The interactions between cemented carbide tool properties and cutting process parameters, including cutting edge rounding, are discussed. The results show that cemented carbides with higher thermal conductivities lead to lower temperatures during cutting. As a result, the effective hardness at the cutting edge can be strongly influenced by the thermal conductivity. The differences in hardness measured at room temperature can be equalized or evened out depending on the combination of hardness and thermal conductivity. This in turn has a direct influence on tool wear. Wear is also influenced by the softening of the workpiece, so that higher cutting temperatures can lead to less wear despite the same effective hardness.

SELECTION OF CITATIONS
SEARCH DETAIL
...