Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Access Microbiol ; 5(9)2023.
Article in English | MEDLINE | ID: mdl-37841095

ABSTRACT

Streptococcus pyogenes (also known as group A Streptococcus , Strep A) is an obligate human pathogen with significant global morbidity and mortality. Transmission is believed to occur primarily between individuals via respiratory droplets, but knowledge about other potential sources of transmission via aerosols or the environment is limited. Such knowledge is required to design optimal interventions to control transmission, particularly in endemic settings. We aim to detail an experimental methodology to assess the transmission potential of Strep A in a clinical environment. We will examine potential sources of transmission in up to 20 participants recruited to the Controlled human infection for penicillin against Streptococcus pyogenes (CHIPS) Trial. Three approaches to understanding transmission will be used: the use of selective agar settle plates to capture possible droplet or airborne spread of Strep A; measurement of the possible distance of Strep A droplet spread during conversation; and environmental swabbing of personal and common high-touch items to detect the presence of Strep A on hard and soft surfaces. All methods are designed to allow for an assessment of transmission potential by symptomatic, asymptomatic and non-cases. Ethical approval has been obtained through Bellberry Human Research Ethics Committee (approval 2021-03-295). Trial registration number: ACTRN12621000751875. Any results elicited from these experiments will be of benefit to the scientific literature in improving our knowledge of opportunities to prevent Strep A transmission as a direct component of the primordial prevention of rheumatic fever. Findings will be reported at local, national and international conferences and in peer-reviewed journals.

2.
Euro Surveill ; 28(18)2023 05.
Article in English | MEDLINE | ID: mdl-37140450

ABSTRACT

BackgroundMeta-analyses and single-site studies have established that children are less infectious than adults within a household when positive for ancestral SARS-CoV-2. In addition, children appear less susceptible to infection when exposed to ancestral SARS-CoV-2 within a household. The emergence of SARS-CoV-2 variants of concern (VOC) has been associated with an increased number of paediatric infections worldwide. However, the role of children in the household transmission of VOC, relative to the ancestral virus, remains unclear.AimWe aimed to evaluate children's role in household transmission of SARS-CoV-2 VOC.MethodsWe perform a meta-analysis of the role of children in household transmission of both ancestral SARS-CoV-2 and SARS-CoV-2 VOC.ResultsUnlike with the ancestral virus, children infected with VOC spread SARS-CoV-2 to an equivalent number of household contacts as infected adults and were equally as likely to acquire SARS-CoV-2 VOC from an infected family member. Interestingly, the same was observed when unvaccinated children exposed to VOC were compared with unvaccinated adults exposed to VOC.ConclusionsThese data suggest that the emergence of VOC was associated with a fundamental shift in the epidemiology of SARS-CoV-2. It is unlikely that this is solely the result of age-dependent differences in vaccination during the VOC period and may instead reflect virus evolution over the course of the pandemic.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Humans , COVID-19/epidemiology , COVID-19/transmission , Pandemics , SARS-CoV-2/genetics , Vaccination , Family Characteristics
3.
PeerJ ; 11: e14945, 2023.
Article in English | MEDLINE | ID: mdl-36935916

ABSTRACT

Introduction: Group A Streptococcus (GAS) causes pharyngitis (sore throat) and impetigo (skin sores) GAS pharyngitis triggers rheumatic fever (RF) with epidemiological evidence supporting that GAS impetigo may also trigger RF in Australian Aboriginal children. Understanding the concurrent burden of these superficial GAS infections is critical to RF prevention. This pilot study aimed to trial tools for concurrent surveillance of sore throats and skins sore for contemporary studies of RF pathogenesis including development of a sore throat checklist for Aboriginal families and pharynx photography. Methods: Yarning circle conversations and semi-structured interviews were performed with Aboriginal caregivers and used to develop the language and composition of a sore throat checklist. The sore throat story checklist was combined with established methods of GAS pharyngitis and impetigo surveillance (examination, bacteriological culture, rapid antigen detection and serological tests) and new technologies (photography) and used for a pilot cross-sectional surveillance study of Aboriginal children attending their health clinic for a routine appointment. Feasibility, acceptability, and study costs were compiled. Results: Ten Aboriginal caregivers participated in the sore-throat yarning circles; a checklist was derived from predominant symptoms and their common descriptors. Over two days, 21 Aboriginal children were approached for the pilot surveillance study, of whom 17 were recruited; median age was 9 years [IQR 5.5-13.5], 65% were female. One child declined throat swabbing and three declined finger pricks; all other surveillance elements were completed by each child indicating high acceptability of surveillance assessments. Mean time for screening assessment was 19 minutes per child. Transport of clinical specimens enabled gold standard microbiological and serological testing for GAS. Retrospective examination of sore throat photography concorded with assessments performed on the day. Conclusion: Yarning circle conversations were effective in deriving culturally appropriate sore throat questionnaires for GAS pharyngitis surveillance. New and established tools were feasible, practical and acceptable to participants and enable surveillance to determine the burden of superficial GAS infections in communities at high risk of RF. Surveillance of GAS pharyngitis and impetgio in remote Australia informs primary RF prevention with potential global translation.


Subject(s)
Impetigo , Pharyngitis , Rheumatic Fever , Streptococcal Infections , Child , Humans , Female , Child, Preschool , Adolescent , Male , Pilot Projects , Retrospective Studies , Cross-Sectional Studies , Australia/epidemiology , Streptococcus pyogenes , Rheumatic Fever/epidemiology , Streptococcal Infections/diagnosis , Pharyngitis/diagnosis
4.
Nat Commun ; 13(1): 6557, 2022 11 30.
Article in English | MEDLINE | ID: mdl-36450721

ABSTRACT

Described antimicrobial resistance mechanisms enable bacteria to avoid the direct effects of antibiotics and can be monitored by in vitro susceptibility testing and genetic methods. Here we describe a mechanism of sulfamethoxazole resistance that requires a host metabolite for activity. Using a combination of in vitro evolution and metabolic rescue experiments, we identify an energy-coupling factor (ECF) transporter S component gene (thfT) that enables Group A Streptococcus to acquire extracellular reduced folate compounds. ThfT likely expands the substrate specificity of an endogenous ECF transporter to acquire reduced folate compounds directly from the host, thereby bypassing the inhibition of folate biosynthesis by sulfamethoxazole. As such, ThfT is a functional equivalent of eukaryotic folate uptake pathways that confers very high levels of resistance to sulfamethoxazole, yet remains undetectable when Group A Streptococcus is grown in the absence of reduced folates. Our study highlights the need to understand how antibiotic susceptibility of pathogens might function during infections to identify additional mechanisms of resistance and reduce ineffective antibiotic use and treatment failures, which in turn further contribute to the spread of antimicrobial resistance genes amongst bacterial pathogens.


Subject(s)
Streptococcus pyogenes , Sulfamethoxazole , Sulfamethoxazole/pharmacology , Anti-Bacterial Agents/pharmacology , Substrate Specificity , Folic Acid
5.
Open Forum Infect Dis ; 9(Suppl 1): S31-S40, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36128405

ABSTRACT

Invasive group A streptococcal (Strep A) infections occur when Streptococcus pyogenes, also known as beta-hemolytic group A Streptococcus, invades a normally sterile site in the body. This article provides guidelines for establishing surveillance for invasive Strep A infections. The primary objective of invasive Strep A surveillance is to monitor trends in rates of infection and determine the demographic and clinical characteristics of patients with laboratory-confirmed invasive Strep A infection, the age- and sex-specific incidence in the population of a defined geographic area, trends in risk factors, and the mortality rates and rates of nonfatal sequelae caused by invasive Strep A infections. This article includes clinical descriptions followed by case definitions, based on clinical and laboratory evidence, and case classifications (confirmed or probable, if applicable) for invasive Strep A infections and for 3 Strep A syndromes: streptococcal toxic shock syndrome, necrotizing fasciitis, and pregnancy-associated Strep A infection. Considerations of the type of surveillance are also presented, noting that most people who have invasive Strep A infections will present to hospital and that invasive Strep A is a notifiable disease in some countries. Minimal surveillance necessary for invasive Strep A infection is facility-based, passive surveillance. A resource-intensive but more informative approach is active case finding of laboratory-confirmed Strep A invasive infections among a large (eg, state-wide) and well defined population. Participant eligibility, surveillance population, and additional surveillance components such as the use of International Classification of Disease diagnosis codes, follow-up, period of surveillance, seasonality, and sample size are discussed. Finally, the core data elements to be collected on case report forms are presented.

6.
Open Forum Infect Dis ; 9(Suppl 1): S25-S30, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36128406

ABSTRACT

Cellulitis is an acute bacterial infection of the dermis and subcutaneous tissue usually found complicating a wound, ulcer, or dermatosis. This article provides guidelines for the surveillance of cellulitis. The primary objectives of cellulitis surveillance are to (1) monitor trends in rates of infection, (2) describe the demographic and clinical characteristics of patients with cellulitis, (3) estimate the frequency of complications, and (4) describe the risk factors associated with primary and recurrent cellulitis. This article includes case definitions for clinical cellulitis and group A streptococcal cellulitis, based on clinical and laboratory evidence, and case classifications for an initial and recurrent case. It is expected that surveillance for cellulitis will be for all-cause cellulitis, rather than specifically for Strep A cellulitis. Considerations of the type of surveillance are also presented, including identification of data sources and surveillance type. Minimal surveillance necessary for cellulitis is facility-based, passive surveillance. Prospective, active, facility-based surveillance is recommended for estimates of pathogen-specific cellulitis burden. Participant eligibility, surveillance population, and additional surveillance considerations such as active follow-up of cases, the use of International Classification of Disease diagnosis codes, and microbiological sampling of cases are discussed. Finally, the core data elements to be collected on case report forms are presented.

7.
Open Forum Infect Dis ; 9(Suppl 1): S15-S24, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36128409

ABSTRACT

Impetigo is a highly contagious bacterial infection of the superficial layer of skin. Impetigo is caused by group A Streptococcus (Strep A) and Staphylococcus aureus, alone or in combination, with the former predominating in many tropical climates. Strep A impetigo occurs mainly in early childhood, and the burden varies worldwide. It is an acute, self-limited disease, but many children experience frequent recurrences that make it a chronic illness in some endemic settings. We present a standardized surveillance protocol including case definitions for impetigo including both active (purulent, crusted) and resolving (flat, dry) phases and discuss the current tests used to detect Strep A among persons with impetigo. Case classifications that can be applied are detailed, including differentiating between incident (new) and prevalent (existing) cases of Strep A impetigo. The type of surveillance methodology depends on the burden of impetigo in the community. Active surveillance and laboratory confirmation is the preferred method for case detection, particularly in endemic settings. Participant eligibility, surveillance population and additional considerations for surveillance of impetigo, including examination of lesions, use of photographs to document lesions, and staff training requirements (including cultural awareness), are addressed. Finally, the core elements of case report forms for impetigo are presented and guidance for recording the course and severity of impetigo provided.

8.
Open Forum Infect Dis ; 9(Suppl 1): S5-S14, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36128410

ABSTRACT

Pharyngitis, more commonly known as sore throat, is caused by viral and/or bacterial infections. Group A Streptococcus (Strep A) is the most common bacterial cause of pharyngitis. Strep A pharyngitis is an acute, self-limiting disease but if undertreated can lead to suppurative complications, nonsuppurative poststreptococcal immune-mediated diseases, and toxigenic presentations. We present a standardized surveillance protocol, including case definitions for pharyngitis and Strep A pharyngitis, as well as case classifications that can be used to differentiate between suspected, probable, and confirmed cases. We discuss the current tests used to detect Strep A among persons with pharyngitis, including throat culture and point-of-care tests. The type of surveillance methodology depends on the resources available and the objectives of surveillance. Active surveillance and laboratory confirmation is the preferred method for case detection. Participant eligibility, the surveillance population and additional considerations for surveillance of pharyngitis are addressed, including baseline sampling, community engagement, frequency of screening and season. Finally, we discuss the core elements of case report forms for pharyngitis and provide guidance for the recording of severity and pain associated with the course of an episode.

10.
BMJ Open ; 12(4): e057296, 2022 04 06.
Article in English | MEDLINE | ID: mdl-35387825

ABSTRACT

INTRODUCTION: Group A ß-haemolytic Streptococcus (GAS), a Gram-positive bacterium, causes skin, mucosal and systemic infections. Repeated GAS infections can lead to autoimmune diseases acute rheumatic fever (ARF) and rheumatic heart disease (RHD). Aboriginal and Torres Strait Islander peoples in Australia have the highest rates of ARF and RHD in the world. Despite this, the contemporaneous prevalence and incidence of GAS pharyngitis and impetigo in remote Australia remains unknown. To address this, we have designed a prospective surveillance study of GAS pharyngitis and impetigo to collect coincident contemporary evidence to inform and enhance primary prevention strategies for ARF. METHODS AND ANALYSIS: The Missing Piece Study aims to document the epidemiology of GAS pharyngitis and impetigo through collection of clinical, serological, microbiological and bacterial genomic data among remote-living Australian children. The study comprises two components: (1) screening of all children at school for GAS pharyngitis and impetigo up to three times a year and (2) weekly active surveillance visits to detect new cases of pharyngitis and impetigo. Environmental swabbing in remote schools will be included, to inform environmental health interventions. In addition, the application of new diagnostic technologies, microbiome analysis and bacterial genomic evaluations will enhance primary prevention strategies, having direct bearing on clinical care, vaccine development and surveillance for vaccine clinical trials. ETHICS AND DISSEMINATION: Ethical approval has been obtained from the Western Australian Aboriginal Health Ethics Committee (Ref: 892) and Human Research Ethics Committee of the University of Western Australia (Ref: RA/4/20/5101). Study findings will be shared with community members, teachers and children at participating schools, together with academic and medical services. Sharing findings in an appropriate manner is important and will be done in a suitable way which includes plain language summaries and presentations. Finally, findings and updates will also be disseminated to collaborators, researchers and health planners through peer-reviewed journal publications.


Subject(s)
Health Services, Indigenous , Impetigo , Pharyngitis , Rheumatic Fever , Rheumatic Heart Disease , Streptococcal Infections , Australia/epidemiology , Child , Humans , Impetigo/epidemiology , Native Hawaiian or Other Pacific Islander , Pharyngitis/drug therapy , Pharyngitis/epidemiology , Prospective Studies , Rheumatic Fever/epidemiology , Streptococcal Infections/epidemiology , Streptococcal Infections/microbiology , Streptococcal Infections/prevention & control , Streptococcus pyogenes , Western Australia/epidemiology
11.
Vaccine ; 39(38): 5401-5409, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34384633

ABSTRACT

BACKGROUND: Papua New Guinea (PNG) introduced the 13-valent pneumococcal conjugate vaccine (PCV13) in 2014, with administration at 1, 2, and 3 months of age. PCV13 has reduced or eliminated carriage of vaccine types in populations with low pneumococcal carriage prevalence, carriage density and serotype diversity. This study investigated PCV13 impact on serotype-specific pneumococcal carriage prevalence, density, and serotype diversity in PNG infants, who have some of the highest reported rates of pneumococcal carriage and disease in the world. METHODS: Nasopharyngeal swabs were collected at 1, 4 and 9 months of age from PCV13-vaccinated infants (n = 57) and age-/season-matched, unvaccinated infants (at approximately 1 month, n = 53; 4 months, n = 57; 9 months, n = 52). Serotype-specific pneumococcal carriage density and antimicrobial resistance genes were identified by qPCR and microarray. RESULTS: Pneumococci were present in 89% of swabs, with 60 different serotypes and four non-encapsulated variants detected. Multiple serotype carriage was common (47% of swabs). Vaccine type carriage prevalence was similar between PCV13-vaccinated and unvaccinated infants at 4 and 9 months of age. The prevalence of non-vaccine type carriage was also similar between cohorts, with non-vaccine types present in three-quarters of samples (from both vaccinated and unvaccinated infants) by 4 months of age. The median pneumococcal carriage density was high and similar at each age group (~7.0 log10genome equivalents/mL). PCV13 had no effect on overall pneumococcal carriage density, vaccine type density, non-vaccine type density, or the prevalence of antimicrobial resistance genes. CONCLUSION: PNG infants experience dense and diverse pneumococcal colonisation with concurrent serotypes from 1 month of age. PCV13 had no impact on pneumococcal carriage density, even for vaccine serotypes. The low prevalence of vaccine serotypes, high pneumococcal carriage density and abundance of non-vaccine serotypes likely contribute to the lack of PCV13 impact on carriage in PNG infants. Indirect effects of the infant PCV programs are likely to be limited in PNG. Alternative vaccines with broader coverage should be considered.


Subject(s)
Pneumococcal Infections , Carrier State/epidemiology , Cross-Sectional Studies , Humans , Infant , Nasopharynx , Papua New Guinea/epidemiology , Pneumococcal Infections/epidemiology , Pneumococcal Infections/prevention & control , Vaccination
12.
Syst Rev ; 10(1): 90, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33789732

ABSTRACT

BACKGROUND: Group A Streptococcus (Strep A) is an important cause of mortality and morbidity globally. This bacterium is responsible for a range of different infections and post-infectious sequelae. Summarising the current knowledge of Strep A transmission to humans will address gaps in the evidence and inform prevention and control strategies. The objective of this study is to evaluate the modes of transmission and attack rates of group A streptococcal infection in human populations. METHODS: This systematic review protocol was prepared according to the Preferred Reporting Items for Systematic reviews and Meta-analysis Protocols (PRISMA-P) 2015 Statement. Using a comprehensive search strategy to identify any transmission studies that have been published in English since 1980, full-text articles will be identified and considered for inclusion against predefined criteria. We will include all studies reporting on Strep A transmission, who have identified a mode of transmission, and who reported attack rates. Risk of bias will be appraised using an appropriate tool. Our results will be described narratively and where feasible and appropriate, a meta-analysis utilizing the random-effects model will be used to aggregate the incidence proportions (attack rates) for each mode of transmission. In addition, we will also evaluate the emm genotype variants of the M protein causing Strep A infection and the association with transmission routes and attack rates, if any, by setting, socioeconomic background and geographical regions. DISCUSSION: We anticipate that this review will contribute to elucidating Strep A modes of transmission which in turn, will serve to inform evidence-based strategies including environmental health activities to reduce the transmission of Strep A in populations at risk of severe disease. TRIAL REGISTRATION: Systematic review registration: PROSPERO ( CRD42019138472 ).


Subject(s)
Streptococcal Infections , Humans , Incidence , Meta-Analysis as Topic , Streptococcal Infections/epidemiology , Systematic Reviews as Topic
13.
Clin Infect Dis ; 72(12): e1146-e1153, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33283240

ABSTRACT

The role of children in the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) remains highly controversial. To address this issue, we performed a meta-analysis of the published literature on household SARS-CoV-2 transmission clusters (n = 213 from 12 countries). Only 8 (3.8%) transmission clusters were identified as having a pediatric index case. Asymptomatic index cases were associated with a lower secondary attack in contacts than symptomatic index cases (estimate risk ratio [RR], 0.17; 95% confidence interval [CI], 0.09-0.29). To determine the susceptibility of children to household infections the secondary attack rate in pediatric household contacts was assessed. The secondary attack rate in pediatric household contacts was lower than in adult household contacts (RR, 0.62; 95% CI, 0.42-0.91). These data have important implications for the ongoing management of the COVID-19 pandemic, including potential vaccine prioritization strategies.


Subject(s)
COVID-19 , SARS-CoV-2 , Adult , Child , Family Characteristics , Humans , Incidence , Pandemics
14.
Am J Trop Med Hyg ; 103(6): 2530-2532, 2020 12.
Article in English | MEDLINE | ID: mdl-32901604

ABSTRACT

Over 5 days, 120 schoolchildren from two schools in the remote Kimberley region of Australia were screened for Strep A pharyngitis. Molecular point-of-care testing identified Strep A pharyngitis in 13/18 (72.2%) symptomatic children. The portability and feasibility of molecular point-of-care testing was highly practical for remote settings.


Subject(s)
Nucleic Acid Amplification Techniques/methods , Streptococcal Infections/diagnosis , Streptococcus pyogenes/isolation & purification , Australia/epidemiology , Child , Delivery of Health Care , Humans , Pilot Projects , Streptococcal Infections/microbiology , Time Factors
15.
Infect Immun ; 88(4)2020 03 23.
Article in English | MEDLINE | ID: mdl-31964748

ABSTRACT

Nasopharyngeal colonization with nontypeable Haemophilus influenzae (NTHi) is a prerequisite for developing NTHi-associated infections, including otitis media. Therapies that block NTHi colonization may prevent disease development. We previously demonstrated that Haemophilus haemolyticus, a closely related human commensal, can inhibit NTHi colonization and infection of human respiratory epithelium in vitro We have now assessed whether Muribacter muris (a rodent commensal from the same family) can prevent NTHi colonization and disease in vivo using a murine NTHi otitis media model. Otitis media was modeled in BALB/c mice using coinfection with 1 × 104.5 PFU of influenza A virus MEM H3N2, followed by intranasal challenge with 5 × 107 CFU of NTHi R2866 Specr Mice were pretreated or not with an intranasal inoculation of 5 × 107 CFU M. muris 24 h before coinfection. NTHi and M. muris viable counts and inflammatory mediators (gamma interferon [IFN-γ], interleukin-1ß [IL-1ß], IL-6, keratinocyte chemoattractant [KC], and IL-10) were measured in nasal washes and middle ear tissue homogenate. M. muris pretreatment decreased the median colonization density of NTHi from 6 × 105 CFU/ml to 9 × 103 CFU/ml (P = 0.0004). Only 1/12 M. muris-pretreated mice developed otitis media on day 5 compared to 8/15 mice with no pretreatment (8% versus 53%, P = 0.0192). Inflammation, clinical score, and weight loss were also lower in M. muris-pretreated mice. We have demonstrated that a single dose of a closely related commensal can delay onset of NTHi otitis media in vivo Human challenge studies investigating prevention of NTHi colonization are warranted to reduce the global burden of otitis media and other NTHi diseases.


Subject(s)
Antibiosis , Carrier State/prevention & control , Haemophilus Infections/prevention & control , Haemophilus influenzae/growth & development , Otitis Media/prevention & control , Pasteurellaceae/growth & development , Administration, Intranasal , Animals , Colony Count, Microbial , Cytokines/analysis , Disease Models, Animal , Influenza A Virus, H3N2 Subtype/growth & development , Mice, Inbred BALB C , Nasal Mucosa/immunology , Nasopharynx/microbiology
16.
Article in English | MEDLINE | ID: mdl-31344807

ABSTRACT

Indigenous children have much higher rates of ear and lung disease than non-Indigenous children, which may be related to exposure to high levels of geogenic (earth-derived) particulate matter (PM). The aim of this study was to assess the relationship between dust levels and health in Indigenous children in Western Australia (W.A.). Data were from a population-based sample of 1077 Indigenous children living in 66 remote communities of W.A. (>2,000,000 km2), with information on health outcomes derived from carer reports and hospitalisation records. Associations between dust levels and health outcomes were assessed by multivariate logistic regression in a multi-level framework. We assessed the effect of exposure to community sampled PM on epithelial cell (NuLi-1) responses to non-typeable Haemophilus influenzae (NTHi) in vitro. High dust levels were associated with increased odds of hospitalisation for upper (OR 1.77 95% CI [1.02-3.06]) and lower (OR 1.99 95% CI [1.08-3.68]) respiratory tract infections and ear disease (OR 3.06 95% CI [1.20-7.80]). Exposure to PM enhanced NTHi adhesion and invasion of epithelial cells and impaired IL-8 production. Exposure to geogenic PM may be contributing to the poor respiratory health of disadvantaged communities in arid environments where geogenic PM levels are high.


Subject(s)
Air Pollutants/analysis , Ear Diseases/epidemiology , Particulate Matter/analysis , Respiratory Tract Diseases/epidemiology , Adolescent , Air Pollutants/toxicity , Cell Adhesion/drug effects , Cell Line , Child , Child, Preschool , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epithelial Cells/virology , Haemophilus influenzae , Humans , Indigenous Peoples/statistics & numerical data , Infant , Infant, Newborn , Interleukin-8/metabolism , Odds Ratio , Particulate Matter/toxicity , Western Australia/epidemiology
17.
Vaccines (Basel) ; 7(1)2019 Jan 31.
Article in English | MEDLINE | ID: mdl-30708945

ABSTRACT

Otitis media (OM) is a major reason for antibiotic consumption and surgery in children. Nasopharyngeal carriage of otopathogens, Streptococcus pneumoniae and nontypeable Haemophilus influenzae (NTHi), is a prerequisite for development of OM, and increased nasopharyngeal otopathogen density correlates with disease onset. Vaccines can reduce or eliminate otopathogen carriage, as demonstrated for pneumococcal serotypes included in pneumococcal conjugate vaccines (PCV). The 10-valent PCV (PCV10) includes an NTHi carrier protein, and in 2011 superseded 7-valent PCV on the New Zealand Immunisation Program. Data are conflicting on whether PCV10 provides protection against NTHi carriage or disease. Assessing this in otitis-prone cohorts is important for OM prevention. We compared otopathogen density in the nasopharynx and middle ear of New Zealand PCV7-vaccinated and PCV10-vaccinated otitis-prone and non-otitis-prone children to determine PCV10 impact on NTHi and S. pneumoniae carriage. We applied qPCR to specimens collected from 217 PCV7-vaccinated children (147 otitis-prone and 70 non-otitis-prone) and 240 PCV10-vaccinated children (178 otitis-prone and 62 non-otitis-prone). After correcting for age and day-care attendance, no difference was observed between NTHi density in the nasopharynx of PCV7-vaccinated versus PCV10-vaccinated otitis-prone (p = 0.563) or non-otitis-prone (p = 0.513) children. In contrast, pneumococcal nasopharyngeal density was higher in PCV10-vaccinated otitis-prone children than PCV7-vaccinated otitis-prone children (p = 0.003). There was no difference in otopathogen density in middle ear effusion from PCV7-vaccinated versus PCV10-vaccinated otitis-prone children (NTHi p = 0.918; S. pneumoniae p = 0.415). When pneumococcal carriage was assessed by vaccine serotypes (VT) and non-vaccine serotypes (NVT), there was no difference in VT density (p = 0.546) or NVT density (p = 0.315) between all PCV7-vaccinated versus all PCV10-vaccinated children. In summary, PCV10 did not reduce NTHi density in the nasopharynx or middle ear, and was associated with increased pneumococcal nasopharyngeal density in otitis-prone children in New Zealand. Development of therapies that prevent or reduce otopathogen colonisation density in the nasopharynx are warranted to reduce the burden of OM.

18.
Genome Biol Evol ; 10(11): 2932-2946, 2018 11 01.
Article in English | MEDLINE | ID: mdl-30335144

ABSTRACT

Moraxella catarrhalis is a human-adapted pathogen, and a major cause of otitis media (OM) and exacerbations of chronic obstructive pulmonary disease. The species is comprised of two main phylogenetic lineages, RB1 and RB2/3. Restriction-modification (R-M) systems are among the few lineage-associated genes identified in other bacterial genera and have multiple functions including defense against foreign invading DNA, maintenance of speciation, and epigenetic regulation of gene expression. Here, we define the repertoire of R-M systems in 51 publicly available M. catarrhalis genomes and report their distribution among M. catarrhalis phylogenetic lineages. An association with phylogenetic lineage (RB1 or RB2/3) was observed for six R-M systems, which may contribute to the evolution of the lineages by restricting DNA transformation. In addition, we observed a relationship between a mutually exclusive Type I R-M system and a Type III R-M system at a single locus conserved throughout a geographically and clinically diverse set of M. catarrhalis isolates. The Type III R-M system at this locus contains the phase-variable Type III DNA methyltransferase, modM, which controls a phasevarion (phase-variable regulon). We observed an association between modM presence and OM-associated middle ear isolates, indicating a potential role for ModM-mediated epigenetic regulation in OM pathobiology.


Subject(s)
DNA Restriction-Modification Enzymes/genetics , Moraxella catarrhalis/genetics , Genome, Bacterial , Phylogeny
19.
Environ Res ; 164: 248-254, 2018 07.
Article in English | MEDLINE | ID: mdl-29522999

ABSTRACT

Exposure to environmental geogenic (or earth-derived) dust can lead to more frequent and severe infections in the human airway. Particulate matter < 10 µm (PM10) is the component of air pollution that is commonly associated with the exacerbation of respiratory diseases. We have previously demonstrated that mice exposed to geogenic dust PM10 experienced an exacerbation of inflammatory responses to influenza A virus. Whether geogenic dust PM10 also exacerbates respiratory bacterial infection is not yet known, nor are the components of the dust that drive these responses. We treated airway bronchial epithelial cells (NuLi-1) with UV-irradiated geogenic dust PM10 from six remote Western Australian towns. High levels of IL-6 and IL-8 production were observed, as well as persistent microbial growth. 16 S rRNA sequencing of the growth identified the microbe as Bacillus licheniformis, a spore-forming, environmentally abundant bacterium. We next investigated the interaction of B. licheniformis with respiratory epithelium in vitro to determine whether this exacerbated infection with a bacterial respiratory pathogen (non-typeable Haemophilus influenzae, NTHi). Heat treatment (100 °C) of all PM10 samples eliminated B. licheniformis contamination and reduced epithelial inflammatory responses, suggesting that heat-labile and/or microbial factors were involved in the host response to geogenic dust PM10. We then exposed NuLi-1 epithelium to increasing doses of the isolated Bacillus licheniformis (multiplicity of infection of 10:1, 1:1 or 0.1:1 bacteria: cells) for 1, 3, and 24 h. B. licheniformis and NTHi infection (association and invasion) was assessed using a standard gentamicin survival assay, and epithelial release of IL-6 and IL-8 was measured using a bead based immunoassay. B. licheniformis was cytotoxic to NuLi-1 cells at 24 h. At 3 h post-challenge, B. licheniformis elicited high IL-6 and IL-8 inflammatory responses from NuLi-1 cells compared with cells treated with heat-treated geogenic dust PM10 (p < 0.0001). Whilst treatment of cells with B. licheniformis increased inflammation, this did not make the cells more susceptible to NTHi infection. This study highlights that geogenic dust PM10 can harbour viable bacterial spores that induce inflammation in respiratory epithelium. The impact on respiratory health from inhalation of bacterial spores in PM10 in arid environments may be underestimated. Further investigation into the contribution of B. licheniformis and the wider dust microbiome to respiratory infection is warranted.


Subject(s)
Bacillus licheniformis , Dust , Inflammation , Respiratory Mucosa , Animals , Australia , Humans , Mice , Respiratory Mucosa/microbiology
20.
Article in English | MEDLINE | ID: mdl-27242968

ABSTRACT

Nontypeable Haemophilus influenzae (NTHi) is an opportunistic pathogen that resides in the upper respiratory tract and contributes to a significant burden of respiratory related diseases in children and adults. Haemophilus haemolyticus is a respiratory tract commensal that can be misidentified as NTHi due to high levels of genetic relatedness. There are reports of invasive disease from H. haemolyticus, which further blurs the species boundary with NTHi. To investigate differences in pathogenicity between these species, we optimized an in vitro epithelial cell model to compare the interaction of 10 H. haemolyticus strains with 4 NTHi and 4 H. influenzae-like haemophili. There was inter- and intra-species variability but overall, H. haemolyticus had reduced capacity to attach to and invade nasopharyngeal and bronchoalveolar epithelial cell lines (D562 and A549) within 3 h when compared with NTHi. H. haemolyticus was cytotoxic to both cell lines at 24 h, whereas NTHi was not. Nasopharyngeal epithelium challenged with some H. haemolyticus strains released high levels of inflammatory mediators IL-6 and IL-8, whereas NTHi did not elicit an inflammatory response despite higher levels of cell association and invasion. Furthermore, peripheral blood mononuclear cells stimulated with H. haemolyticus or NTHi released similar and high levels of IL-6, IL-8, IL-10, IL-1ß, and TNFα when compared with unstimulated cells but only NTHi elicited an IFNγ response. Due to the relatedness of H. haemolyticus and NTHi, we hypothesized that H. haemolyticus may compete with NTHi for colonization of the respiratory tract. We observed that in vitro pre-treatment of epithelial cells with H. haemolyticus significantly reduced NTHi attachment, suggesting interference or competition between the two species is possible and warrants further investigation. In conclusion, H. haemolyticus interacts differently with host cells compared to NTHi, with different immunostimulatory and cytotoxic properties. This study provides an in vitro model for further investigation into the pathogenesis of Haemophilus species and the foundation for exploring whether H. haemolyticus can be used to prevent NTHi disease.


Subject(s)
Antibiosis , Epithelial Cells/microbiology , Haemophilus/physiology , Host-Pathogen Interactions , Bacterial Adhesion , Cell Line , Cytokines/metabolism , Endocytosis , Epithelial Cells/immunology , Humans , Leukocytes, Mononuclear/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...