Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Nucl Med ; 56(12): 1828-35, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26429956

ABSTRACT

UNLABELLED: AKT (a serine/threonine-specific protein kinase) regulates many cellular processes contributing to cytotoxic drug resistance. This study's primary objective examined the relationship between GSK2141795, an oral, pan-AKT inhibitor, and (18)F-FDG PET markers of glucose metabolism in tumor tissue to determine whether (18)F-FDG PET could be used to guide personalized dosing of GSK2141795. Biomarker analysis of biopsies was also undertaken. METHODS: Twelve patients were enrolled in 3 cohorts; all underwent dynamic (18)F-FDG PET scans and serial pharmacokinetic sampling at baseline, week 2, and week 4 with tumor biopsies before treatment and at week 4. Response was evaluated by RECIST v1.1 and Gynecologic Cancer Intergroup criteria. Biopsy samples were analyzed for mutations and protein expression. RESULTS: GSK2141795 did not significantly influence blood glucose levels. No dose-response relationship was observed between GSK2141795 pharmacokinetics and (18)F-FDG PET pharmacodynamic measures; however, an exposure-response relationship was seen between maximum drug concentrations and maximal decrease in (18)F-FDG uptake in the best-responding tumor. This relationship also held for pharmacokinetic parameters of exposure and 1,5-anhydroglucitol (a systemic measure of glucose metabolism). Phospho-AKT upregulation at week 4 in biopsies confirmed AKT inhibition by GSK2141795. Single-agent activity was observed with a clinical benefit rate of 27% (3/11) and 30% (3/10) CA125 response in the study's platinum-resistant ovarian patients. AKT pathway activation by PIK3CA/PIK3R1 mutation did not correlate with clinical activity, whereas RAS/RAF pathway mutations did segregate with resistance to AKT inhibition. CONCLUSION: GSK2141795 demonstrated an exposure-response relationship with decreased (18)F-FDG uptake and is active and tolerable. This study's design integrating (18)F-FDG PET, pharmacokinetics, and biomarker analyses demonstrates the potential for clinical development for personalized treatment.


Subject(s)
Antineoplastic Agents/administration & dosage , Antineoplastic Agents/therapeutic use , Diamines/administration & dosage , Diamines/therapeutic use , Fluorodeoxyglucose F18/pharmacokinetics , Genital Neoplasms, Female/diagnostic imaging , Genital Neoplasms, Female/drug therapy , Oncogene Protein v-akt/antagonists & inhibitors , Positron-Emission Tomography/methods , Pyrazoles/administration & dosage , Pyrazoles/therapeutic use , Radiopharmaceuticals/pharmacokinetics , Antineoplastic Agents/adverse effects , Biomarkers , Biopsy , Blood Glucose/metabolism , Deoxyglucose , Diamines/adverse effects , Drug Interactions , Drug Resistance, Neoplasm/genetics , Female , Humans , Oncogene Protein v-akt/genetics , Pyrazoles/adverse effects , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...