Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
FEMS Microbiol Ecol ; 34(1): 81-90, 2000 Oct 01.
Article in English | MEDLINE | ID: mdl-11053739

ABSTRACT

The distribution of insertion sequence 1 (IS1)-containing bacteria was investigated in Windermere (Cumbria, UK), a freshwater body impacted by treated sewage discharge and run-off from the surrounding catchment. Culturable IS1-containing bacteria were recovered from the water column at three depths in Windermere North Basin (WNB) and South Basin (WSB), and from sediment at both sites (at the sediment surface in WSB and to a depth of 12-13 cm in WNB). Polymerase chain reaction amplification of IS1 and the Escherichia coli/Shigella sp. specific gene uidA, from community DNA from shallow sediments, extended the detection limit beyond that of culture at both sites. This detection was extended further into deep sediment extracted from WNB as IS1 and uidA were detected in sub-samples to a depth of 4.7 and 2.3 m, respectively. Analysis of a representative subset of 90 IS1-carrying isolates recovered from water and sediment at both sites demonstrated 21 heterogeneous IS1 profiles with estimated copy numbers ranging from 1 to 16. Identification of the host bacteria showed that the element was confined mainly to Enterobacter spp. However, this study showed IS1 to be present in Citrobacter freundii for the first time. Plasmids were carried by 75.3% of enterobacterial isolates and four plasmids (2.6%) carried IS1. DNA sequence analysis of five IS1 clones demonstrated that IS1 isoforms from this study were similar (>89% nucleotide identity) to known IS1 isoforms. Two isoforms of IS1 from a single Enterobacter cloacae isolate differed by 6.7% at the nucleotide level suggesting that they had been acquired independently.

2.
Microb Ecol ; 38(3): 225-233, 1999 Oct.
Article in English | MEDLINE | ID: mdl-10541784

ABSTRACT

Abstract Methane production and methane oxidation potential were measured in a 30 cm peat core from the Moorhouse Nature Reserve, UK. The distribution of known groups of methanogens and methane oxidizing bacteria throughout this peat core was assessed. Using 16S rRNA gene retrieval and functional gene probing with genes encoding key proteins in methane oxidation and methanogenesis, several major groups of microorganisms were detected. Methane production and oxidation was detected in all depths of the peat core. PCR amplification and oligonucleotide probing experiments using DNA isolated from all sections of the peat core detected methanotrophs from the groups Methylosinus and Methylococcus and methanogens from the groups Methanosarcinaceae, Methanococcaceae, and Methanobacteriaceae. 16S rDNA sequences amplified with the Methylosinus-specific primer were shown to have a high degree of identity with 16S rDNA sequences previously detected in acidic environments. However, no methanogen sequences were detected by the probes available in this study in the sections of the peat core (above 7 cm) where the majority of methanogenesis occurred, either because of low methanogen numbers or because of the presence of novel methanogen sequences.http://link.springer-ny.com/link/service/journals/00248/bibs/38n3p225.html

3.
Appl Environ Microbiol ; 64(10): 3674-82, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9758784

ABSTRACT

The autotrophic ammonia-oxidizing bacteria in a eutrophic freshwater lake were studied over a 12-month period. Numbers of ammonia oxidisers in the lakewater were small throughout the year, and tangential-flow concentration was required to obtain meaningful estimates of most probable numbers. Sediments from littoral and profundal sites supported comparatively large populations of these bacteria, and the nitrification potential was high, particularly in summer samples from the littoral sediment surface. In enrichment cultures, lakewater samples nitrified at low (0.67 mM) ammonium concentrations only whereas sediment samples exhibited nitrification at high (12.5 mM) ammonium concentrations also. Enrichments at low ammonium concentration did not nitrify when inoculated into high-ammonium medium, but the converse was not true. This suggests that the water column contains a population of ammonia oxidizers that is sensitive to high ammonium concentrations. The observation of nitrification at high ammonium concentration by isolates from some winter lakewater samples, identified as nitrosospiras by 16S rRNA probing, is consistent with the hypothesis that sediment ammonia oxidizers enter the water column at overturn. With only one exception, nested PCR amplification enabled the detection of Nitrosospira 16S rDNA in all samples, but Nitrosomonas (N. europaea-eutropha lineage) 16S rDNA was never obtained. However, the latter were part of the sediment and water column communities, because their 16S rRNA could be detected by specific oligonucleotide probing of enrichment cultures. Furthermore, a specific PCR amplification regime for the Nitrosomonas europaea ammonia monooxygenase gene (amoA) yielded positive results when applied directly to sediment and lakewater samples. Patterns of Nitrosospira and Nitrosomonas detection by 16S rRNA oligonucleotide probing of sediment enrichment cultures were complex, but lakewater enrichments at low ammonium concentration were positive for nitrosomonads and not nitrosospiras. Analysis of enrichment cultures has therefore provided evidence for the existence of subpopulations within the lake ammonia-oxidizing community distinguishable on the basis of ammonium tolerance and possibly showing a seasonal distribution between the sediment and water column.

SELECTION OF CITATIONS
SEARCH DETAIL
...