Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Cell Infect Microbiol ; 12: 858311, 2022.
Article in English | MEDLINE | ID: mdl-35444958

ABSTRACT

Mortality outbreaks of young Pacific oysters, Crassostrea gigas, have seriously affected the oyster-farming economy in several countries around the world. Although the causes of these mortality outbreaks appear complex, a viral agent has been identified as the main factor: a herpesvirus called ostreid herpesvirus 1 (OsHV-1). Autophagy is an important degradation pathway involved in the response to several pathologies including viral diseases. In C. gigas, recent studies indicate that this pathway is conserved and functional in at least haemocytes and the mantle. Furthermore, an experimental infection in combination with compounds known to inhibit or induce autophagy in mammals revealed that autophagy is involved in the response to OsHV-1 infection. In light of these results, the aim of this study was to determine the role of autophagy in the response of the Pacific oyster to infection by virus OsHV-1. For this purpose, an experimental infection in combination with a modulator of autophagy was performed on Pacific oysters known to have intermediate susceptibility to OsHV-1 infection. In haemolymph and the mantle, the autophagy response was monitored by flow cytometry, western blotting, and real-time PCR. At the same time, viral infection was evaluated by quantifying viral DNA and RNA amounts by real-time PCR. Although the results showed activation of autophagy in haemolymph and the mantle 14 hours post infection (after viral replication was initiated), they were also indicative of different regulatory mechanisms of autophagy in the two tissues, thus supporting an important function of autophagy in the response to virus OsHV-1.


Subject(s)
Crassostrea , Herpesviridae , Virus Diseases , Animals , Autophagy , Crassostrea/genetics , Crassostrea/metabolism , DNA Viruses , DNA, Viral/analysis , Mammals/genetics
2.
Autophagy ; 16(11): 2017-2035, 2020 11.
Article in English | MEDLINE | ID: mdl-31965890

ABSTRACT

The Pacific oyster, Crassostrea gigas, is a mollusk bivalve commercially important as a food source. Pacific oysters are subjected to stress and diseases during culture. The autophagy pathway is involved in numerous cellular processes, including responses to starvation, cell death, and microorganism elimination. Autophagy also exists in C. gigas, and plays a role in the immune response against infections. Although this process is well-documented and conserved in most animals, it is still poorly understood in mollusks. To date, no study has provided a complete overview of the molecular mechanism of autophagy in mollusk bivalves. In this study, human and yeast ATG protein sequences and public databases (Uniprot and NCBI) were used to identify protein members of the C. gigas autophagy pathway. A total of 35 autophagy related proteins were found in the Pacific oyster. RACE-PCR was performed on several genes. Using molecular (real-time PCR) and protein-based (western blot and immunohistochemistry) approaches, the expression and localization of ATG12, ATG9, BECN1, MAP1LC3, MTOR, and SQSTM1, was investigated in different tissues of the Pacific oyster. Comparison with human and yeast counterparts demonstrated a high homology with the human autophagy pathway. The results also demonstrated that the key autophagy genes and their protein products were expressed in all the analyzed tissues of C. gigas. This study allows the characterization of the complete C. gigas autophagy pathway for the first time. Abbreviations: ATG: autophagy related; Atg1/ULK: unc-51 like autophagy activating kinase; ATG7: autophagy related 7; ATG9: autophagy related 9; ATG12: autophagy related 12; BECN1: beclin 1; BSA: bovine serum albumin; cDNA: complementary deoxyribonucleic acid; DNA: deoxyribonucleic acid; GABARAP: GABA type A receptor-associated protein; IHC: immunohistochemistry; MAP1LC3/LC3/Atg8: microtubule associated protein 1 light chain 3; MTOR: mechanistic target of rapamycin kinase; NCBI: national center for biotechnology information; ORF: open reading frame; PBS: phosphate-buffered saline; PCR: polymerase chain reaction; PtdIns3K: class III phosphatidylinositol 3-kinase; RACE-PCR: rapid amplification of cDNA-ends by polymerase chain reaction; RNA: ribonucleic acid; SQSTM1: sequestosome 1; Uniprot: universal protein resource; WIPI: WD repeat domain, phosphoinositide interacting.


Subject(s)
Autophagy-Related Proteins/metabolism , Autophagy/physiology , Microtubule-Associated Proteins/metabolism , Animals , Beclin-1/metabolism , Class III Phosphatidylinositol 3-Kinases/metabolism , Crassostrea/immunology , Humans , Protein Binding/physiology , Yeasts
3.
Autophagy ; 15(10): 1801-1809, 2019 10.
Article in English | MEDLINE | ID: mdl-30939979

ABSTRACT

Macroautophagy is a mechanism that is involved in various cellular processes, including cellular homeostasis and innate immunity. This pathway has been described in organisms ranging in complexity from yeasts to mammals, and recent results indicate that it occurs in the mantle of the Pacific oyster, Crassostrea gigas. However, the autophagy pathway has never been explored in the hemocytes of C. gigas, which are the main effectors of its immune system and thus play a key role in the defence of the Pacific oyster against pathogens. To investigate autophagy in oyster hemocytes, tools currently used to monitor this mechanism in mammals, including flow cytometry, fluorescent microscopy and transmission electron microscopy, were adapted and applied to the hemocytes of the Pacific oyster. Oysters were exposed for 24 and 48 h to either an autophagy inducer (carbamazepine, which increases the production of autophagosomes) or an autophagy inhibitor (ammonium chloride, which prevents the degradation of autophagosomes). Autophagy was monitored in fresh hemocytes withdrawn from the adductor muscles of oysters using a combination of the three aforementioned methods. We successfully labelled autophagosomes and observed them by flow cytometry and fluorescence microscopy, and then used electron microscopy to observe ultrastructural modifications related to autophagy, including the presence of double-membrane-bound vacuoles. Our results demonstrated that autophagy occurs in hemocytes of C. gigas and can be modulated by molecules known to modulate autophagy in other organisms. This study describes an integrated approach that can be applied to investigate autophagy in marine bivalves at the cellular level. Abbreviations: MAP1LC3: microtubule associated protein 1 light chain 3; MCA: multiple correspondence analysis; NH4Cl: ammonium chloride; PI: propidium iodide; TEM: transmission electron microscopy.


Subject(s)
Autophagy/physiology , Crassostrea , Hemocytes/physiology , Animals , Autophagosomes/physiology , Autophagosomes/ultrastructure , Crassostrea/cytology , Crassostrea/metabolism , Crassostrea/ultrastructure , Flow Cytometry , Hemocytes/cytology , Hemocytes/ultrastructure , Microscopy, Electron, Transmission , Microscopy, Fluorescence
5.
Harmful Algae ; 57(Pt A): 78-87, 2016 Jul.
Article in English | MEDLINE | ID: mdl-30170724

ABSTRACT

Ciguatera Fish Poisoning (CFP) is a foodborne disease classically related to the consumption of tropical coral reef fishes contaminated with ciguatoxins (CTXs), neurotoxins produced by dinoflagellates of the Gambierdiscus genus. Severe atypical ciguatera-like incidents involving giant clams, a marine resource highly consumed in the South Pacific, are also frequently reported in many Pacific Islands Countries and Territories. The present study was designed to assess the ability of giant clams to accumulate CTXs in their tissues and highlight the potential health risks associated with their consumption. Since giant clams are likely to be exposed to both free-swimming Gambierdiscus cells and dissolved CTXs in natural environment, ex situ contamination experiments were conducted as follows: giant clams were exposed to live or lyzed cells of TB92, a highly toxic strain of G. polynesiensis containing 5.83±0.85pg P-CTX-3C equiv.cell-1vs. HIT0, a weakly toxic strain of G. toxicus containing only (2.05±1.16)×10-3pg P-CTX-3C equiv.cell-1, administered over a 48h period at a concentration of 150cellsmL-1. The presence of CTXs in giant clams tissues was further assessed using the mouse neuroblastoma cell-based assay (CBA-N2a). Results showed that giant clams exposed to either lyzed or live cells of TB92 were able to bioaccumulate CTXs at concentrations well above the safety limit recommended for human consumption, i.e. 3.28±1.37 and 2.92±1.03ng P-CTX-3C equiv.g-1 flesh (wet weight), respectively, which represented approximately 3% of the total toxin load administered to the animals. In contrast, giant clams exposed to live or lyzed cells of HIT0 were found to be free of toxins, suggesting that in the nature, the risk of contamination of these bivalves is established only in the presence of highly toxic blooms of Gambierdiscus. Liquid chromatography-mass spectrometry (LC-MS/MS) analyses confirmed CBA-N2a results and also revealed that P-CTX-3B was the major CTX congener retained in the tissues of giant clams fed with TB92 cells. To the best of our knowledge, this study is the first to provide evidence of the bioaccumulation of Gambierdiscus CTXs in giant clams and confirms that these bivalve molluscs can actually constitute another pathway in ciguatera poisonings. While most monitoring programs currently focus on fish toxicity, these findings stress the importance of a concomitant surveillance of these marine invertebrates in applicable locations for an accurate assessment of ciguatera risk.

SELECTION OF CITATIONS
SEARCH DETAIL
...