Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
Stem Cells Transl Med ; 12(10): 676-688, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37616262

ABSTRACT

In a steady state, hematopoietic stem cells (HSC) exhibit very low levels of reactive oxygen species (ROS). Upon stress, HSC get activated and enter into proliferation and differentiation process to ensure blood cell regeneration. Once activated, their levels of ROS increase, as messengers to mediate their proliferation and differentiation programs. However, at the end of the stress episode, ROS levels need to return to normal to avoid HSC exhaustion. It was shown that antioxidants can prevent loss of HSC self-renewal potential in several contexts such as aging or after exposure to low doses of irradiation suggesting that antioxidants can be used to maintain HSC functional properties upon culture-induced stress. Indeed, in humans, HSC are increasingly used for cell and gene therapy approaches, requiring them to be cultured for several days. As expected, we show that a short culture period leads to drastic defects in HSC functional properties. Moreover, a switch of HSC transcriptional program from stemness to differentiation was evidenced in cultured HSC. Interestingly, cultured-HSC treated with 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl (4-hydroxy-TEMPO or Tempol) exhibited a higher clonogenic potential in secondary colony forming unit cell (CFU-C) assay and higher reconstitution potential in xenograft model, compared to untreated cultured-HSC. By transcriptomic analyses combined with serial CFU-C assays, we show that Tempol, which mimics superoxide dismutase, protects HSC from culture-induced stress partly through VEGFα signaling. Thus, we demonstrate that adding Tempol leads to the protection of HSC functional properties during ex vivo culture.


Subject(s)
Antioxidants , Hematopoietic Stem Cells , Humans , Antioxidants/pharmacology , Reactive Oxygen Species , Cyclic N-Oxides/pharmacology , Cells, Cultured , Cell Proliferation
2.
Clin Immunol ; 255: 109730, 2023 10.
Article in English | MEDLINE | ID: mdl-37562724

ABSTRACT

Aging is associated with bone marrow (BM) inflammaging and, in some individuals, with the onset of clonal hematopoiesis (CH) of indeterminate potential. In this study conducted on 94 strictly healthy volunteers (18 to 80 yo), we measured BM and peripheral blood (PB) plasma levels of 49 hematopoietic and inflammatory cytokines. With aging, 7 cytokines increased in BM (FLT3L, CXCL9, HGF, FGF-2, CCL27, IL-16, IL-18) and 8 decreased (G-CSF, TNF, IL-2, IL-15, IL-17A, CCL7, IL-4, IL-10). In PB, 10 cytokines increased with age (CXCL9, FLT3L, CCL27, CXCL10, HGF, CCL11, IL-16, IL-6, IL-1 beta, CCL2). CH was associated with higher BM levels of MIF and IL-1 beta, lower BM levels of IL-9 and IL-5 and higher PB levels of IL-15, VEGF-A, IL-2, CXCL8, CXCL1 and G-CSF. These reference values provide a useful tool to investigate anomalies related to inflammaging and potentially leading to the onset of age-related myeloid malignancies or inflammatory conditions.


Subject(s)
Bone Marrow , Cytokines , Humans , Interleukin-1beta , Interleukin-15 , Clonal Hematopoiesis , Interleukin-16 , Interleukin-2 , Granulocyte Colony-Stimulating Factor , Bone Marrow Cells , Hematopoiesis
3.
Sci Rep ; 12(1): 9748, 2022 06 13.
Article in English | MEDLINE | ID: mdl-35697729

ABSTRACT

The treatment of acute myeloid leukemia (AML) with unfavorable cytogenetics treatment remains a challenge. We previously established that ex vivo exposure of AML blasts to eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), or fish oil emulsion (FO) induces Nrf2 pathway activation, metabolic switch, and cell death. The FILO group launched a pilot clinical study to evaluate the feasibility, safety, and efficacy of the adjunction of a commercial FO emulsion to 3 + 7 in untreated AML with unfavorable cytogenetics. The primary objective was complete response (CR). Thirty patients were included. FO administration raised the plasma levels of eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids (p < 0.001). The pharmacokinetics of cytarabine and daunorubicin were unaffected. A historical comparison to the LAM2001 trial (Lioure et al. Blood 2012) found a higher frequency of grade 3 serious adverse events, with no drug-related unexpected toxicity. The CR rate was 77%, and the partial response (PR) 10%, not significantly superior to that of the previous study (CR 72%, PR 1%). RT-qPCR analysis of Nrf2 target genes and antioxidant enzymes did not show a significant in vivo response. Overall, FO emulsion adjunction to 3 + 7 is feasible. An improvement in CR was not shown in this cohort of high-risk patients. The present data does not support the use of FO in adjunction with 3 + 7 in high-risk AML patients.ClinicalTrials.gov identifier: NCT01999413.


Subject(s)
Cytarabine , Leukemia, Myeloid, Acute , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Cytarabine/therapeutic use , Daunorubicin/therapeutic use , Docosahexaenoic Acids/therapeutic use , Eicosapentaenoic Acid , Emulsions/therapeutic use , Feasibility Studies , Fish Oils/therapeutic use , Humans , Induction Chemotherapy , Leukemia, Myeloid, Acute/genetics , NF-E2-Related Factor 2/genetics
4.
EMBO J ; 41(12): e108306, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35506364

ABSTRACT

Influenza virus infection causes considerable morbidity and mortality, but current therapies have limited efficacy. We hypothesized that investigating the metabolic signaling during infection may help to design innovative antiviral approaches. Using bronchoalveolar lavages of infected mice, we here demonstrate that influenza virus induces a major reprogramming of lung metabolism. We focused on mitochondria-derived succinate that accumulated both in the respiratory fluids of virus-challenged mice and of patients with influenza pneumonia. Notably, succinate displays a potent antiviral activity in vitro as it inhibits the multiplication of influenza A/H1N1 and A/H3N2 strains and strongly decreases virus-triggered metabolic perturbations and inflammatory responses. Moreover, mice receiving succinate intranasally showed reduced viral loads in lungs and increased survival compared to control animals. The antiviral mechanism involves a succinate-dependent posttranslational modification, that is, succinylation, of the viral nucleoprotein at the highly conserved K87 residue. Succinylation of viral nucleoprotein altered its electrostatic interactions with viral RNA and further impaired the trafficking of viral ribonucleoprotein complexes. The finding that succinate efficiently disrupts the influenza replication cycle opens up new avenues for improved treatment of influenza pneumonia.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Orthomyxoviridae Infections , Pneumonia , Animals , Antiviral Agents/pharmacology , Humans , Influenza A Virus, H3N2 Subtype/metabolism , Mice , Nucleocapsid Proteins , Nucleoproteins/metabolism , Succinic Acid/metabolism , Succinic Acid/pharmacology , Succinic Acid/therapeutic use , Virus Replication
5.
Cancer Gene Ther ; 29(8-9): 1263-1275, 2022 08.
Article in English | MEDLINE | ID: mdl-35194200

ABSTRACT

DNA methylation, a major biological process regulating the transcription, contributes to the pathophysiology of hematologic malignancies, and hypomethylating agents are commonly used to treat myelodysplastic syndromes (MDS) and acute myeloid leukemias (AML). In these diseases, bone marrow mesenchymal stromal cells (MSCs) play a key supportive role through the production of various signals and interactions. The DNA methylation status of MSCs, likely to reflect their functionality, might be relevant to understand their contribution to the pathophysiology of these diseases. Consequently, the aim of our study was to analyze the modifications of DNA methylation profiles of MSCs induced by MDS or AML. MSCs from MDS/AML patients were characterized via 5-methylcytosine quantification, gene expression profiles of key regulators of DNA methylation, identification of differentially methylated regions (DMRs) by methylome array, and quantification of DMR-coupled genes expression. MDS and AML-MSCs displayed global hypomethylation and under-expression of DNMT1 and UHRF1. Methylome analysis revealed aberrant methylation profiles in all MDS and in a subgroup of AML-MSCs. This aberrant methylation was preferentially found in the sequence of homeobox genes, especially from the HOX family (HOXA1, HOXA4, HOXA5, HOXA9, HOXA10, HOXA11, HOXB5, HOXC4, and HOXC6), and impacted on their expression. These results highlight modifications of DNA methylation in MDS/AML-MSCs, both at global and focal levels dysregulating the expression of HOX genes well known for their involvement in leukemogenesis. Such DNA methylation in MSCs could be the consequence of the malignant disease or could participate in its development through defective functionality or exosomal transfer of HOX transcription factors from MSCs to hematopoietic cells.


Subject(s)
Leukemia, Myeloid, Acute , Mesenchymal Stem Cells , Myelodysplastic Syndromes , Bone Marrow/pathology , Bone Marrow Cells/metabolism , Bone Marrow Cells/pathology , CCAAT-Enhancer-Binding Proteins/genetics , CCAAT-Enhancer-Binding Proteins/metabolism , DNA Methylation , Genes, Homeobox/genetics , Humans , Leukemia, Myeloid, Acute/pathology , Mesenchymal Stem Cells/metabolism , Myelodysplastic Syndromes/genetics , Transcription Factors/genetics , Ubiquitin-Protein Ligases/metabolism
6.
Cancers (Basel) ; 13(22)2021 Nov 14.
Article in English | MEDLINE | ID: mdl-34830855

ABSTRACT

(1) Background: The impact of occupational exposure to high doses of pesticides on hematologic disorders is widely studied. Yet, lifelong exposure to low doses of pesticides, and more particularly their cocktail effect, although poorly known, could also participate to the development of such hematological diseases as myelodysplastic syndrome (MDS) in elderly patients. (2) Methods: In this study, a cocktail of seven pesticides frequently present in water and food (maneb, mancozeb, iprodione, imazalil, chlorpyrifos ethyl, diazinon and dimethoate), as determined by the European Food Safety Authority, were selected. Their in vitro effects at low-doses on primary BM-MSCs from healthy volunteers were examined. (3) Results: Exposure of normal BM-MSCs to pesticides for 21 days inhibited cell proliferation and promoted DNA damage and senescence. Concomitantly, these cells presented a decrease in aldehyde dehydrogenase 2 (ALDH2: mRNA, protein and enzymatic activity) and an increase in acetaldehyde levels. Pharmacological inhibition of ALDH2 with disulfiram recapitulated the alterations induced by exposure to low doses of pesticides. Moreover, BM-MSCs capacity to support primitive hematopoiesis was significantly altered. Similar biological abnormalities were found in primary BM-MSCs derived from MDS patients. (4) Conclusions: these results suggest that ALDH2 could participate in the pathophysiology of MDS in elderly people long exposed to low doses of pesticides.

7.
Cancers (Basel) ; 13(3)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494332

ABSTRACT

The incidence of myelodysplastic syndrome increases with aging and the early diagnosis enables optimal care of these diseases. The DxH 800 hematology analyzer measures and calculates 126 cytological parameters, but only 23 are used for routine CBC assessment. The goal of this study was to use the 103 unexploited "research parameters" to develop an algorithm allowing for an early detection of subclinical MDS patients by triggering morphological analysis. Blood sample parameters from 101 MDS patients and 88 healthy volunteers were analyzed to identify the critical "research parameters" with: (i) the most significant differences between MDS patients and healthy volunteers, (ii) the best contributions to principal component analysis (PCA), first axis, and (iii) the best correlations with PCA, first two axes (cos2 > 0.6). Ten critical "research parameters" of white blood cells were identified, allowing for the calculation of an MDS-likelihood score (MDS-LS), based on logistic regression. Automatic calculation of the MDS-LS is easily implementable on the middleware system of the DxH 800 to generate a flag for blood smear review, and possibly early detection of MDS patients in the general population.

8.
Sci Rep ; 11(1): 2007, 2021 01 21.
Article in English | MEDLINE | ID: mdl-33479366

ABSTRACT

The impact of pesticides on health is a major public health concern. A higher risk to develop chronic lymphoid malignancies has been demonstrated to be associated with occupational pesticide exposure (OPE). By contrast, little is known of the impact of OPE on the occurrence of myeloid malignancies especially acute myeloid leukemia (AML). The purpose of this meta-analysis is to summarize data on the association between OPE and AML. A relevant dataset of case-control studies was extracted. Among 6784 references extracted, 14 were selected, representing 3,955 AML patients and 9,948 control subjects diagnosed between 1976 and 2010. An adverse association was found between OPE and AML (OR = 1.51; 95%CI: 1.10-2.08), not affected by sensitivity analyses. Funnel plot asymmetry suggested a publication bias underestimating OR. Stratified analysis showed the association to be driven by studies with: (1) monocentric AML patients and hospital-based control population, (2) Newcastle-Ottawa scale > 6 and the group of studies identified as with the lowest risk, (3) exposure assessment through peer-to-peer interview, (4) diagnosis in North America and Asia and after 1995, (5) restriction to de novo AML. Moreover, the association between OPE and AML was significant with insecticides. These findings broaden the spectrum of pesticide toxicity to myeloid malignancies.


Subject(s)
Environmental Exposure/adverse effects , Leukemia, Myeloid, Acute/epidemiology , Occupational Exposure , Pesticides/adverse effects , Asia , Case-Control Studies , Female , Humans , Leukemia, Myeloid, Acute/chemically induced , Leukemia, Myeloid, Acute/pathology , Male , Maternal Exposure/adverse effects , North America , Risk Factors
9.
Int J Mol Sci ; 21(22)2020 Nov 14.
Article in English | MEDLINE | ID: mdl-33202543

ABSTRACT

The bone marrow (BM) microenvironment plays a crucial role in the development and progression of leukemia (AML). Intracellular reactive oxygen species (ROS) are involved in the regulation of the biology of leukemia-initiating cells, where the antioxidant enzyme GPx-3 could be involved as a determinant of cellular self-renewal. Little is known however about the role of the microenvironment in the control of the oxidative metabolism of AML cells. In the present study, a coculture model of BM mesenchymal stromal cells (MSCs) and AML cells (KG1a cell-line and primary BM blasts) was used to explore this metabolic pathway. MSC-contact, rather than culture with MSC-conditioned medium, decreases ROS levels and inhibits the Nrf-2 pathway through overexpression of GPx3 in AML cells. The decrease of ROS levels also inactivates p38MAPK and reduces the proliferation of AML cells. Conversely, contact with AML cells modifies MSCs in that they display an increased oxidative stress and Nrf-2 activation, together with a concomitant lowered expression of GPx-3. Altogether, these experiments suggest that a reciprocal control of oxidative metabolism is initiated by direct cell-cell contact between MSCs and AML cells. GPx-3 expression appears to play a crucial role in this cross-talk and could be involved in the regulation of leukemogenesis.


Subject(s)
Gene Expression Regulation, Enzymologic , Gene Expression Regulation, Neoplastic , Glutathione Peroxidase/biosynthesis , Leukemia, Myeloid, Acute/enzymology , Neoplasm Proteins/biosynthesis , Tumor Microenvironment , Cell Line, Tumor , Coculture Techniques , Humans , Leukemia, Myeloid, Acute/pathology , Mesenchymal Stem Cells/enzymology , Mesenchymal Stem Cells/pathology , Oxidation-Reduction
10.
Blood Adv ; 4(20): 5322-5335, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33108456

ABSTRACT

Advances in transcriptomics have improved our understanding of leukemic development and helped to enhance the stratification of patients. The tendency of transcriptomic studies to combine AML samples, regardless of cytogenetic abnormalities, could lead to bias in differential gene expression analysis because of the differential representation of AML subgroups. Hence, we performed a horizontal meta-analysis that integrated transcriptomic data on AML from multiple studies, to enrich the less frequent cytogenetic subgroups and to uncover common genes involved in the development of AML and response to therapy. A total of 28 Affymetrix microarray data sets containing 3940 AML samples were downloaded from the Gene Expression Omnibus database. After stringent quality control, transcriptomic data on 1534 samples from 11 data sets, covering 10 AML cytogenetically defined subgroups, were retained and merged with the data on 198 healthy bone marrow samples. Differentially expressed genes between each cytogenetic subgroup and normal samples were extracted, enabling the unbiased identification of 330 commonly deregulated genes (CODEGs), which showed enriched profiles of myeloid differentiation, leukemic stem cell status, and relapse. Most of these genes were downregulated, in accordance with DNA hypermethylation. CODEGs were then used to create a prognostic score based on the weighted sum of expression of 22 core genes (CODEG22). The score was validated with microarray data of 5 independent cohorts and by quantitative real time-polymerase chain reaction in a cohort of 142 samples. CODEG22-based stratification of patients, globally and into subpopulations of cytologically healthy and elderly individuals, may complement the European LeukemiaNet classification, for a more accurate prediction of AML outcomes.


Subject(s)
Leukemia, Myeloid, Acute , Aged , Cytogenetics , Humans , Leukemia, Myeloid, Acute/diagnosis , Leukemia, Myeloid, Acute/genetics , Microarray Analysis , Neoplasm Recurrence, Local , Prognosis
11.
Cytometry B Clin Cytom ; 98(6): 516-521, 2020 11.
Article in English | MEDLINE | ID: mdl-32886395

ABSTRACT

Low reactive oxygen species (ROS) levels are well-established characteristics of mouse hematopoietic stem cells (HSCs). However, little is known about these levels in human HSCs. This study aimed at quantifying ROS levels in human CD34+ CD38low and CD34+ CD38high human progenitors from bone marrow, cord blood and cells mobilized for autologous HSC transplantation. A specifically devised multiparameter flow cytometry method was used to quantify ROS levels (H2 DCFDA staining) in sub-populations of primary cells. Results were confirmed by assessing gene expression level of the ROS scavenger GPX3, a key determinant of HSC self-renewal, in sorted CD34+ CD38low and CD34+ CD38high cells. CD34+ CD38low cells from bone marrow and cord blood displayed significantly lower levels of ROS than CD34+ CD38high cells and other leukocytes. Moreover, the correlation between ROS and GPX3 expression was verified in sorted CD34+ CD38low and CD34+ CD38high cells. These results confirm, in human, data previously reported in mice. Moreover, the flow cytometry assay we developed could allow for a more precise enumeration of repopulating primitive progenitors in the course of HSC transplantation.


Subject(s)
Flow Cytometry , Glutathione Peroxidase/genetics , Hematopoietic Stem Cells/cytology , Reactive Oxygen Species/metabolism , ADP-ribosyl Cyclase 1/genetics , Animals , Antigens, CD34/genetics , Bone Marrow Cells/cytology , Bone Marrow Cells/metabolism , Cell Lineage/genetics , Gene Expression Regulation, Developmental/genetics , Hematopoietic Stem Cell Transplantation , Hematopoietic Stem Cells/metabolism , Humans , Leukocytes/metabolism , Mice , Stem Cells/cytology , Stem Cells/metabolism
12.
Oncogene ; 39(10): 2227, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31700154

ABSTRACT

The original version of this Article omitted the following from the Acknowledgements: This research was also supported by grants to KZ (UL and L-CNRS). This has now been corrected in both the PDF and HTML versions of the Article.

13.
Oncogene ; 39(6): 1198-1212, 2020 02.
Article in English | MEDLINE | ID: mdl-31649334

ABSTRACT

The bone marrow (BM) niche impacts the progression of acute myeloid leukemia (AML) by favoring the chemoresistance of AML cells. Intimate interactions between leukemic cells and BM mesenchymal stromal cells (BM-MSCs) play key roles in this process. Direct intercellular communications between hematopoietic cells and BM-MSCs involve connexins, components of gap junctions. We postulated that blocking gap junction assembly could modify cell-cell interactions in the leukemic niche and consequently the chemoresistance. The comparison of BM-MSCs from AML patients and healthy donors revealed a specific profile of connexins in BM-MSCs of the leukemic niche and the effects of carbenoxolone (CBX), a gap junction disruptor, were evaluated on AML cells. CBX presents an antileukemic effect without affecting normal BM-CD34+ progenitor cells. The proapoptotic effect of CBX on AML cells is in line with the extinction of energy metabolism. CBX acts synergistically with cytarabine (Ara-C) in vitro and in vivo. Coculture experiments of AML cells with BM-MSCs revealed that CBX neutralizes the protective effect of the niche against the Ara-C-induced apoptosis of leukemic cells. Altogether, these results suggest that CBX could be of therapeutic interest to reduce the chemoresistance favored by the leukemic niche, by targeting gap junctions, without affecting normal hematopoiesis.


Subject(s)
Carbenoxolone/pharmacology , Cytarabine/pharmacology , Drug Resistance, Neoplasm , Gap Junctions/drug effects , Leukemia, Myeloid, Acute/drug therapy , Mesenchymal Stem Cells/cytology , Tumor Microenvironment/drug effects , Animals , Anti-Ulcer Agents/pharmacology , Antimetabolites, Antineoplastic/pharmacology , Apoptosis , Cell Proliferation , Drug Therapy, Combination , Humans , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Mice , Mice, Inbred NOD , Mice, SCID , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
14.
Blood Adv ; 3(24): 4271-4279, 2019 12 23.
Article in English | MEDLINE | ID: mdl-31869414

ABSTRACT

Myelodysplastic syndromes (MDS) are a heterogeneous group of clonal stem cell disorders with an inherent tendency for transformation in secondary acute myeloid leukemia. This study focused on the redox metabolism of bone marrow (BM) cells from 97 patients compared with 25 healthy controls. The level of reactive oxygen species (ROS) was quantified by flow cytometry in BM cell subsets as well as the expression level of 28 transcripts encoding for major enzymes involved in the antioxidant cellular response. Our results highlight increased ROS levels in BM nonlymphoid cells and especially in primitive CD34posCD38low progenitor cells. Moreover, we identified a specific antioxidant signature, dubbed "antioxidogram," for the different MDS subgroups or secondary acute myeloblastic leukemia (sAML). Our results suggest that progression from MDS toward sAML could be characterized by 3 successive molecular steps: (1) overexpression of enzymes reducing proteic disulfide bonds (MDS with <5% BM blasts [GLRX family]); (2) increased expression of enzymes detoxifying H2O2 (MDS with 5% to 19% BM blasts [PRDX and GPX families]); and finally (3) decreased expression of these enzymes in sAML. The antioxidant score (AO-Score) defined by logistic regression from the expression levels of transcripts made it possible to stage disease progression and, interestingly, this AO-Score was independent of the revised International Scoring System. Altogether, this study demonstrates that MDS and sAML present an important disturbance of redox metabolism, especially in BM stem and progenitor cells and that the specific molecular antioxidant response parameters (antioxidogram, AO-Score) could be considered as useful biomarkers for disease diagnosis and follow-up.


Subject(s)
Antioxidants/metabolism , Bone Marrow Cells/metabolism , Bone Marrow/metabolism , Myelodysplastic Syndromes/metabolism , Oxidative Stress , Bone Marrow/pathology , Bone Marrow Cells/pathology , Case-Control Studies , Cells, Cultured , Disease Progression , Gene Expression Regulation, Enzymologic , Humans , Immunophenotyping , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Leukemia, Myeloid, Acute/pathology , Metabolomics/methods , Myelodysplastic Syndromes/genetics , Myelodysplastic Syndromes/pathology , Reactive Oxygen Species/metabolism
15.
Pharmacol Res ; 136: 45-55, 2018 10.
Article in English | MEDLINE | ID: mdl-30142422

ABSTRACT

Acute Myeloid Leukemia (AML) remains a therapeutic challenge and improvements in chemotherapy are needed. n-3 polyunsaturated fatty acids (PUFAs), present in fish oil (FO) at high concentrations, have antitumoral properties in various cancer models. We investigated the effects of two n-3 PUFAs, docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA), in AML cell lines and primary AML blasts. EPA and DHA induced a dose-dependent decrease in cell viability in five AML cell lines, which was also observed with FO, but not SO (devoid of n-3 PUFAs) in cell lines and primary leucoblasts. Mitochondrial energy metabolism shifted from oxidative respiration to glycolytic metabolism in the U937, MOLM-13, and HL-60 cell lines. This phenomenon was associated with major disorganization of the mitochondrial network and mitochondrial swelling. Transcriptomic analysis after 6 h and 24 h of exposure to FO revealed a Nrf2 activation signature, which was confirmed by evidence of Nrf2 nuclear translocation in response to oxidative stress, but insufficient to prevent cell death following prolonged exposure. Apoptosis studies showed consistent phosphatidylserine exposition among the AML cell lines tested and a reduced mitochondrial membrane potential. The cell-killing effect of FO was additive with that of cytarabine (AraC), by the Chou and Talalay method, and this combination effect could be reproduced in primary AML blasts. Altogether, our results show deleterious effects of n-3 PUFAs on mitochondrial metabolism of AML cells, associated with oxidative stress and Nrf2 response, leading to cell death. These observations support further investigation of n-3 PUFA addition to standard chemotherapy in AML.


Subject(s)
Antineoplastic Agents/pharmacology , Cytarabine/pharmacology , Fatty Acids, Omega-3/pharmacology , Fish Oils/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Cell Death/drug effects , Cell Line, Tumor , Energy Metabolism/drug effects , Glycolysis , Humans , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/metabolism , Mitochondria/drug effects , Mitochondria/metabolism , NF-E2-Related Factor 2/genetics , Signal Transduction/drug effects
16.
J Neurosci ; 34(46): 15482-9, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25392515

ABSTRACT

Information exchange executed by extracellular vesicles, including exosomes, is a newly described form of intercellular communication important in the development and physiology of neural systems. These vesicles can be released from cells, are packed with information including signaling proteins and both coding and regulatory RNAs, and can be taken up by target cells, thereby facilitating the transfer of multilevel information. Recent studies demonstrate their critical role in physiological processes, including nerve regeneration, synaptic function, and behavior. These vesicles also have a sinister role in the propagation of toxic amyloid proteins in neurodegenerative conditions, including prion diseases and Alzheimer's and Parkinson's diseases, in inducing neuroinflammation by exchange of information between the neurons and glia, as well as in aiding tumor progression in the brain by subversion of normal cells. This article provides a summary of topics covered in a symposium and is not meant to be a comprehensive review of the subject.


Subject(s)
Brain/cytology , Brain/physiology , Exosomes/physiology , Animals , Brain/physiopathology , Cilia/physiology , Humans , Neoplasm Invasiveness/physiopathology , Nerve Regeneration/physiology , Neurodegenerative Diseases/physiopathology
17.
Mol Endocrinol ; 28(4): 429-41, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24617548

ABSTRACT

T3, the active form of thyroid hormone, binds nuclear receptors that regulate the transcription of a large number of genes in many cell types. Unraveling the direct and indirect effect of this hormonal stimulation, and establishing links between these molecular events and the developmental and physiological functions of the hormone, is a major challenge. New mouse genetics tools, notably those based on Cre/loxP technology, are suitable to perform a multiscale analysis of T3 signaling and achieve this task.


Subject(s)
Genetic Techniques , Thyroid Hormones/metabolism , Animals , Humans , Mice , Mutation/genetics , Recombination, Genetic/genetics
18.
Development ; 141(1): 166-75, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24346699

ABSTRACT

Thyroid hormone is necessary for normal development of the central nervous system, as shown by the severe mental retardation syndrome affecting hypothyroid patients with low levels of active thyroid hormone. The postnatal defects observed in hypothyroid mouse cerebellum are recapitulated in mice heterozygous for a dominant-negative mutation of Thra, the gene encoding the ubiquitous TRα1 receptor. Using CRE/loxP-mediated conditional expression approach, we found that this mutation primarily alters the differentiation of Purkinje cells and Bergmann glia, two cerebellum-specific cell types. These primary defects indirectly affect cerebellum development in a global manner. Notably, the inward migration and terminal differentiation of granule cell precursors is impaired. Therefore, despite the broad distribution of its receptors, thyroid hormone targets few cell types that exert a predominant role in the network of cellular interactions that govern normal cerebellum maturation.


Subject(s)
Cerebellum/embryology , Neuroglia/metabolism , Purkinje Cells/metabolism , Thyroid Hormone Receptors alpha/metabolism , Triiodothyronine/metabolism , Animals , Cell Differentiation/genetics , Cell Movement/genetics , Cell Proliferation , Cerebellum/cytology , Cerebellum/metabolism , Eye Proteins/biosynthesis , Homeodomain Proteins/biosynthesis , Mice , Mice, Inbred C57BL , PAX6 Transcription Factor , Paired Box Transcription Factors/biosynthesis , Repressor Proteins/biosynthesis , Thyroid Hormone Receptors alpha/genetics
19.
Glia ; 61(11): 1795-806, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24038411

ABSTRACT

Axonal regeneration in the peripheral nervous system is greatly supported by Schwann cells (SCs). After nerve injury, SCs dedifferentiate to a progenitor-like state and efficiently guide axons to their original target tissues. Contact and soluble factors participate in the crosstalk between SCs and axons during axonal regeneration. Here we show that dedifferentiated SCs secrete nano-vesicles known as exosomes which are specifically internalized by axons. Surprisingly, SC-derived exosomes markedly increase axonal regeneration in vitro and enhance regeneration after sciatic nerve injury in vivo. Exosomes shift the growth cone morphology to a pro-regenerating phenotype and decrease the activity of the GTPase RhoA, involved in growth cone collapse and axon retraction. Altogether, our work identifies a novel mechanism by which SCs communicate with neighboring axons during regenerative processes. We propose that SC exosomes represent an important mechanism by which these cells locally support axonal maintenance and regeneration after nerve damage.


Subject(s)
Axons/metabolism , Exosomes/metabolism , Nerve Regeneration/physiology , Peripheral Nerve Injuries/metabolism , Schwann Cells/metabolism , Animals , Axons/pathology , Cells, Cultured , Male , Peripheral Nerve Injuries/pathology , Peripheral Nerves/metabolism , Peripheral Nerves/pathology , Rats , Rats, Sprague-Dawley
20.
PLoS One ; 7(5): e30703, 2012.
Article in English | MEDLINE | ID: mdl-22586439

ABSTRACT

Thyroid hormone (T3) has a major influence on cerebellum post-natal development. The major phenotypic landmark of exposure to low levels of T3 during development (hypothyroidism) in the cerebellum is the retarded inward migration of the most numerous cell type, granular neurons. In order to identify the direct genetic regulation exerted by T3 on cerebellar neurons and their precursors, we used microarray RNA hybridization to perform a time course analysis of T3 induced gene expression in primary cultures of cerebellar neuronal cell. These experiments suggest that we identified a small set of genes which are directly regulated, both in vivo and in vitro, during cerebellum post-natal development. These modest changes suggest that T3 does not acts directly on granular neurons and mainly indirectly influences the cellular interactions taking place during development.


Subject(s)
Cerebellum , Gene Expression Regulation, Developmental , Neurons , Thyroid Hormone Receptors alpha , Animals , Animals, Newborn/growth & development , Cells, Cultured , Cerebellum/growth & development , Cerebellum/metabolism , Genome , Hypothyroidism/metabolism , Male , Mice , Mice, Transgenic , Neurons/metabolism , Oligonucleotide Array Sequence Analysis/methods , Spermatogonia/metabolism , Thyroid Hormone Receptors alpha/genetics , Thyroid Hormone Receptors alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...