Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 46(22): 12502-9, 2012 Nov 20.
Article in English | MEDLINE | ID: mdl-23126588

ABSTRACT

Multifunctional organic nitrates are potential NO(x) reservoirs whose atmospheric chemistry is somewhat little known. They could play an important role in the spatial distribution of reactive nitrogen species and consequently in ozone formation and distribution in remote areas. In this work, the rate constants for the reaction with OH radical and the photolysis frequencies of α-nitrooxyacetone, 3-nitrooxy-2-butanone, and 3-methyl-3-nitrooxy-2-butanone have been determined at room temperature at 1000 mbar total pressure of synthetic air. The rate constants for the OH oxidation were measured using the relative rate technique, with methanol as reference compound. The following rate constants were obtained for the reaction with OH: k(OH) = (6.7 ± 2.5) × 10(-13) cm(3) molecule(-1) s(-1) for α-nitrooxyacetone, (10.6 ± 4.1) × 10(-13) cm(3) molecule(-1) s(-1) for 3-nitrooxy-2-butanone, and (2.6 ± 0.9) × 10(-13) cm(3) molecule(-1) s(-1) for 3-methyl-3-nitrooxy-2-butanone. The corresponding photolysis frequencies extrapolated to typical atmospheric conditions for July first at noon at 40° latitude North were (4.8 ± 0.3) × 10(-5) s(-1), (5.7 ± 0.3) × 10(-5) s(-1), and (7.4 ± 0.2) × 10(-5) s(-1), respectively. The data show that photolysis is a major atmospheric sink for these organic nitrates.


Subject(s)
Air Pollutants/chemistry , Hydroxyl Radical/chemistry , Nitrates/chemistry , Photolysis , Atmosphere/chemistry , Oxidation-Reduction , Ozone/chemistry
2.
J Phys Chem A ; 114(37): 10045-8, 2010 Sep 23.
Article in English | MEDLINE | ID: mdl-20795682

ABSTRACT

Knowing the ozone absorption cross sections in the ultraviolet and infrared spectral range, with an accuracy of better than 1%, is of the utmost importance for atmospheric remote-sensing applications. For this reason, various ozone intensity intercomparisons and measurements have been published these last years. However, the corresponding results proved not to be consistent and thus have raised a controversial discussion in the community of atmospheric remote-sensing. This study, where great care has been taken to avoid any possible error, reports a new laboratory intercomparison of the ozone absorption coefficients in the mid-infrared (10 µm) and ultraviolet (300-350 nm) spectral regions. It gives a new piece of information to the puzzling problem concerning the ozone IR and UV cross sections and confirms that the IR and UV cross sections recommended in the literature are in disagreement of about 4%.


Subject(s)
Laboratories , Ozone/chemistry , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared
3.
Environ Sci Technol ; 44(12): 4615-21, 2010 Jun 15.
Article in English | MEDLINE | ID: mdl-20491436

ABSTRACT

Vinyl acetate is widely used in industry. It has been classified as a high-production volume (HPV) chemical in the United States. To evaluate its impact on the environment and air quality, its atmospheric reactivity toward the three main tropospheric oxidants (OH, NO(3), and O(3)) has been investigated. Kinetic and mechanistic experiments have been conducted at room temperature and atmospheric pressure using an indoor Pyrex simulation chamber coupled to Fourier transform infrared (FTIR) and UV-visible spectrometers. Rate constants for the reactions of vinyl acetate with OH, NO(3), and O(3) were equal to (2.3 +/- 0.3) x 10(-11), (7.3 +/- 1.8) x 10(-15), and (3.0 +/- 0.4) x 10(-18) cm(3) molecule(-1) s(-1), respectively. From these data, tropospheric lifetimes of vinyl acetate have been estimated as follows: tau(OH) = 6 h, tau(NO(3)) = 6 days, and tau(O(3)) = 5 days. This demonstrates that reaction with OH radicals is the main tropospheric loss process of this compound. From the mechanistic experiments, main oxidation products have been identified and quantified and oxidation schemes have been proposed for each studied reaction.


Subject(s)
Atmosphere/chemistry , Gases/chemistry , Hydroxyl Radical/chemistry , Nitrates/chemistry , Ozone/chemistry , Phase Transition , Vinyl Compounds/chemistry , Alkenes/chemistry , Kinetics , Oxidation-Reduction , Reference Standards
4.
J Phys Chem A ; 109(6): 1008-14, 2005 Feb 17.
Article in English | MEDLINE | ID: mdl-16833407

ABSTRACT

For the measurement of atmospheric ozone concentrations, the mid-infrared and ultraviolet regions are both used by ground-, air-, or satellite-borne instruments. In this study we report the first laboratory intercomparison of the ozone absorption coefficients using simultaneous measurements in these spectral regions. The intercomparison shows good agreement (around 98.5%) between the HITRAN 2000 recommendation for the mid-infrared and the most reference measurements in the ultraviolet regions, whereas systematic differences of about 5.5% are observed when using the recommendation of HITRAN2003 for the mid-infrared. Possible reasons for this discrepancy are discussed. Future measurements are clearly needed to resolve this issue.

5.
Environ Sci Technol ; 36(19): 4081-6, 2002 Oct 01.
Article in English | MEDLINE | ID: mdl-12380078

ABSTRACT

Acetates are emitted into the atmosphere by several anthropic and natural sources. To better evaluate the environmental impact of these compounds, OH-induced oxidation kinetic and mechanism of allyl acetate (CH3C(O)OCH2-CH=CH2) have been investigated at room temperature and atmospheric pressure using three environmental chambers: an indoor Teflon-film bag (LISA, Créteil), an indoor Pyrex photoreactor (LISA, Créteil), and the outdoor Smog chamber EUPHORE (Valencia). Rate constant of the reaction of allyl acetate with OH radicals was determined by relative rate technique in the indoor Teflon-film bag. It is (30.6 +/- 3.1) x 10(-12) cm3 molecule-1 s-1. Mechanistic experiments were performed in the indoor photoreactor and in the outdoor Smog chamber EUPHORE. The main oxidation products observed by FTIR in both chambers were acetoxyacetaldehyde and formaldehyde. From these data, a mechanism was developed to describe the OH-induced oxidation of this acetate in the presence of NOx. Finally, atmospheric impact of allyl acetate emissions was evaluated using kinetic and mechanistic results.


Subject(s)
Acetates/chemistry , Hydroxyl Radical/chemistry , Oxidants/chemistry , Air Pollutants , Atmosphere , Kinetics , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...